Process mining: data science in action
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
[2016]
|
Ausgabe: | Second edition |
Schlagwörter: | |
Links: | http://deposit.dnb.de/cgi-bin/dokserv?id=a755893269c84c0583616dc17589acbd&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029050562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | xix, 467 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9783662498507 9783662570418 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV043636649 | ||
003 | DE-604 | ||
005 | 20200507 | ||
007 | t| | ||
008 | 160622s2016 gw a||| |||| 00||| eng d | ||
015 | |a 16,N11 |2 dnb | ||
015 | |a 16,A27 |2 dnb | ||
016 | 7 | |a 108878030X |2 DE-101 | |
020 | |a 9783662498507 |c Festeinband : circa EUR 64.19 (DE) (freier Preis) , circa EUR 65.99 (AT) (freier Preis), circa sfr 66.00 (freier Preis) |9 978-3-662-49850-7 | ||
020 | |a 9783662570418 |c pbk. |9 978-3-662-57041-8 | ||
035 | |a (OCoLC)945132117 | ||
035 | |a (DE-599)DNB108878030X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-523 |a DE-862 |a DE-703 |a DE-83 |a DE-11 |a DE-2070s |a DE-861 |a DE-N2 |a DE-473 |a DE-1051 |a DE-91G |a DE-860 |a DE-355 |a DE-20 | ||
082 | 0 | |a 004 |2 23 | |
082 | 0 | |a 658.500285 |2 22/ger | |
084 | |a ST 265 |0 (DE-625)143634: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a QP 340 |0 (DE-625)141861: |2 rvk | ||
084 | |a DAT 620f |2 stub | ||
084 | |a 004 |2 sdnb | ||
084 | |a WIR 546f |2 stub | ||
084 | |a 650 |2 sdnb | ||
100 | 1 | |a Aalst, Wil van der |d 1966- |e Verfasser |0 (DE-588)121921115 |4 aut | |
245 | 1 | 0 | |a Process mining |b data science in action |c Wil van der Aalst |
250 | |a Second edition | ||
264 | 1 | |a Berlin ; Heidelberg |b Springer |c [2016] | |
264 | 4 | |c © 2016 | |
300 | |a xix, 467 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Daten |0 (DE-588)4135391-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenmanagement |0 (DE-588)4213132-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Software Engineering |0 (DE-588)4116521-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessmanagement |0 (DE-588)4353072-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prozessmodell |0 (DE-588)4237203-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Betriebliches Informationssystem |0 (DE-588)4069386-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
653 | |a JPP | ||
653 | |a KJQ | ||
653 | |a UM | ||
653 | |a Big Data | ||
653 | |a Business Information Systems | ||
653 | |a Business Intelligence | ||
653 | |a Business Process Management | ||
653 | |a Data Mining | ||
653 | |a Data Science | ||
653 | |a Workflow Management | ||
689 | 0 | 0 | |a Prozessmanagement |0 (DE-588)4353072-2 |D s |
689 | 0 | 1 | |a Betriebliches Informationssystem |0 (DE-588)4069386-7 |D s |
689 | 0 | 2 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 3 | |a Prozessmodell |0 (DE-588)4237203-3 |D s |
689 | 0 | 4 | |a Daten |0 (DE-588)4135391-2 |D s |
689 | 0 | 5 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 0 | 6 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 1 | 1 | |a Software Engineering |0 (DE-588)4116521-4 |D s |
689 | 1 | 2 | |a Prozessmanagement |0 (DE-588)4353072-2 |D s |
689 | 1 | 3 | |a Betriebliches Informationssystem |0 (DE-588)4069386-7 |D s |
689 | 1 | 4 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 5 | |a Prozessmodell |0 (DE-588)4237203-3 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-662-49851-4 |w (DE-604)BV043545973 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=a755893269c84c0583616dc17589acbd&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029050562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-029050562 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0003 DAT 620f 2019 L 192(2) 0048 DAT 620 2013 A 3794(2) 0102 DAT 620f 2013 A 3794(2) |
---|---|
DE-BY-TUM_katkey | 2370957 |
DE-BY-TUM_location | 00 LSB 01 |
DE-BY-TUM_media_number | 040008572345 040008572334 040008572323 040008572301 040008572298 040009559215 040010788271 |
_version_ | 1821935875060137984 |
adam_text | Titel: Process Mining
Autor: Aalst, Wil van der
Jahr: 2016
Contents
Part I Introduction
1 Data Science in Action......................... 3
1.1 Internet of Events......................... 3
1.2 Data Scientist........................... 10
1.3 Bridging the Gap Between Process Science and Data Science . . 15
1.4 Outlook .............................. 20
2 Process Mining: The Missing Link.................. 25
2.1 Limitations ofModeling...................... 25
2.2 Process Mining .......................... 30
2.3 Analyzing an Example Log.................... 35
2.4 Play-In, Play-Out, and Replay................... 41
2.5 Positioning Process Mining.................... 44
2.5.1 How Process Mining Compares to BPM......... 44
2.5.2 How Process Mining Compares to Data Mining..... 46
2.5.3 How Process Mining Compares to Lean Six Sigma .... 46
2.5.4 How Process Mining Compares to BPR.......... 49
2.5.5 How Process Mining Compares to Business Intelligence . 49
2.5.6 How Process Mining Compares to CEP.......... 50
2.5.7 How Process Mining Compares to GRC ......... 50
2.5.8 How Process Mining Compares to ABPD, BPI, WM,.... 51
2.5.9 How Process Mining Compares to Big Data....... 52
Part II Preliminaries
3 Process Modeling and Analysis.................... 55
3.1 The Art ofModeling........................ 55
3.2 Process Models .......................... 57
3.2.1 Transition Systems..................... 58
3.2.2 PetriNets ......................... 59
3.2.3 Workflow Nets....................... 65
3.2.4 YAWL........................... 66
xvi Contents
3.2.5 Business Process Modeling Notation (BPMN)...... 68
3.2.6 Event-Driven Process Chains (EPCs)........... 70
3.2.7 CausalNets ........................ 72
3.2.8 Process Trees ....................... 78
3.3 Model-Based Process Analysis.................. 83
3.3.1 Verification......................... 83
3.3.2 Performance Analysis................... 85
3.3.3 Limitations of Model-Based Analysis........... 88
4 Data Mining............................... 89
4.1 Classification of Data Mining Techniques............. 89
4.1.1 Data Sets: Instances and Variables ............ 90
4.1.2 Supervised Learning: Classification and Regression ... 92
4.1.3 Unsupervised Learning: Clustering and Pattern Discovery 94
4.2 Decision Tree Learning...................... 94
4.3 /t-Means Clustering........................ 100
4.4 Association Rule Learning..................... 104
4.5 Sequence and Episode Mining................... 107
4.5.1 Sequence Mining..................... 107
4.5.2 Episode Mining...................... 109
4.5.3 Other Approaches..................... 111
4.6 Quality of Resulting Models.................... 112
4.6.1 Measuring the Performance of a Classifier........ 113
4.6.2 Cross-Validation...................... 115
4.6.3 Occam sRazor....................... 118
Part III From Event Logs to Process Models
5 Getting the Data ............................ 125
5.1 DataSources............................ 125
5.2 Event Logs............................. 128
5.3 XES................................ 138
5.4 Data Quality............................ 144
5.4.1 Conceptualizing Event Logs................ 145
5.4.2 Classification of Data Quality Issues ........... 148
5.4.3 Guidelines for Logging.................. 151
5.5 Flattening Reality into Event Logs ................ 153
6 Process Discovery: An Introduction.................. 163
6.1 Problem Statement......................... 163
6.2 A Simple Algorithm for Process Discovery............ 167
6.2.1 Basic Idea......................... 167
6.2.2 Algorithm......................... 171
6.2.3 Limitations of the a-Algorithm.............. 174
6.2.4 Taking the Transactional Life-Cycle into Account .... 177
6.3 Rediscovering Process Models .................. 178
6.4 Challenges............................. 182
Contents xvii
6.4.1 Representational Bias................... 183
6.4.2 Noise and Incompleteness................. 185
6.4.3 Four Competing Quality Criteria............. 188
6.4.4 Taking the Right 2-D Slice of a 3-D Reality ....... 192
7 Advanced Process Discovery Techniques............... 195
7.1 Overview.............................. 195
7.1.1 Characteristic 1: Representational Bias.......... 197
7.1.2 Characteristic 2: Ability to Deal With Noise....... 198
7.1.3 Characteristic 3: Completeness Notion Assumed..... 199
7.1.4 Characteristic 4: Approach Used ............. 199
7.2 Heuristic Mining.......................... 201
7.2.1 Causal Nets Revisited................... 201
7.2.2 Learning the Dependency Graph ............. 202
7.2.3 Learning Splits and Joins................. 205
7.3 Genetic Process Mining...................... 207
7.4 Region-Based Mining....................... 212
7.4.1 Learning Transition Systems ............... 212
7.4.2 Process Discovery Using State-Based Regions...... 216
7.4.3 Process Discovery Using Language-Based Regions . . . 218
7.5 Inductive Mining.......................... 222
7.5.1 Inductive Miner Based on Event Log Splitting...... 222
7.5.2 Characteristics of the Inductive Miner........... 229
7.5.3 Extensions and Scalability................. 233
7.6 Historical Perspective....................... 236
Part IV Beyond Process Discovery
8 Conformance Checking ........................ 243
8.1 Business Alignment and Auditing................. 243
8.2 TokenReplay ........................... 246
8.3 Alignments............................. 256
8.4 Comparing Footprints....................... 263
8.5 Other Applications of Conformance Checking.......... 268
8.5.1 Repairing Models..................... 268
8.5.2 Evaluating Process Discovery Algorithms ........ 269
8.5.3 Connecting Event Log and Process Model........ 272
9 Mining Additional Perspectives.................... 275
9.1 Perspectives............................ 275
9.2 Attributes: A Helicopter View................... 277
9.3 Organizational Mining....................... 281
9.3.1 Social Network Analysis ................. 282
9.3.2 Discovering Organizational Structures .......... 287
9.3.3 Analyzing Resource Behavior............... 288
9.4 Time and Probabilities....................... 290
9.5 Decision Mining.......................... 294
9.6 Bringing It All Together...................... 297
xviii Contents
10 Operational Support.......................... 301
10.1 Refined Process Mining Framework................ 301
10.1.1 Cartography........................ 303
10.1.2 Auditing.......................... 304
10.1.3 Navigation......................... 305
10.2 Online Process Mining....................... 305
10.3 Detect............................... 307
10.4 Predict............................... 311
10.5 Recommend............................ 316
10.6 Processes Are Not in Steady State!................ 318
10.6.1 Daily, Weekly and Seasonal Patterns in Processes .... 318
10.6.2 Contextual Factors..................... 318
10.6.3 Concept Drift in Processes................. 320
10.7 Process Mining Spectrum..................... 321
Part V Putting Process Mining to Work
11 Process Mining Software........................ 325
11.1 Process Mining Not Included!................... 325
11.2 Different Types of Process Mining Tools............. 327
11.3 ProM: An Open-Source Process Mining Platform ........ 331
11.3.1 Historical Context..................... 331
11.3.2 Example ProM Plug-ins.................. 333
11.3.3 Other Non-commercial Tools............... 337
11.4 Commercial Software....................... 339
11.4.1 Available Products..................... 339
11.4.2 Strengths and Weaknesses................. 345
11.5 Outlook .............................. 352
12 Process Mining in the Large...................... 353
12.1 Big Event Data........................... 353
12.1.1 iV = All .......................... 354
12.1.2 Hardware and Software Developments.......... 356
12.1.3 Characterizing Event Logs ................ 364
12.2 Case-Based Decomposition.................... 368
12.2.1 Conformance Checking Using Case-Based
Decomposition....................... 369
12.2.2 Process Discovery Using Case-Based Decomposition . . 370
12.3 Activity-Based Decomposition.................. 373
12.3.1 Conformance Checking Using Activity-Based
Decomposition....................... 374
12.3.2 Process Discovery Using Activity-Based Decomposition . 376
12.4 Process Cubes........................... 378
12.5 Streaming Process Mining..................... 381
12.6 Beyond the Hype.......................... 384
Contents xix
13 Analyzing Lasagna Processes .................... 387
13.1 Characterization of Lasagna Processes ............. 387
13.2 UseCases............................. 391
13.3 Approach.............................. 392
13.3.1 Stage 0: Plan and Justify.................. 393
13.3.2 Stage LExtract...................... 395
13.3.3 Stage 2: Create Control-Flow Model and Connect Event
Log............................. 395
13.3.4 Stage 3: Create Integrated Process Model......... 396
13.3.5 Stage 4: Operational Support............... 396
13.4 Applications............................ 397
13.4.1 Process Mining Opportunities per Functional Area . . . . 397
13.4.2 Process Mining Opportunities per Sector......... 398
13.4.3 Two Lasagna Processes.................. 402
14 Analyzing Spaghetti Processes ................... 411
14.1 Characterization of Spaghetti Processes ............. 411
14.2 Approach.............................. 415
14.3 Applications............................ 418
14.3.1 Process Mining Opportunities for Spaghetti Processes . . 418
14.3.2 Examples of Spaghetti Processes............. 420
Part VI Reflection
15 Cartography and Navigation ..................... 431
15.1 Business Process Maps ...................... 431
15.1.1 Map Quality........................ 432
15.1.2 Aggregation and Abstraction............... 432
15.1.3 SeamlessZoom...................... 434
15.1.4 Size, Color, and Layout.................. 438
15.1.5 Customization....................... 440
15.2 Process Mining: TomTom for Business Processes?........ 441
15.2.1 Projecting Dynamic Information on Business Process
Maps............................ 441
15.2.2 Arrival Time Prediction.................. 444
15.2.3 Guidance Rather than Control............... 444
16 Epilogue................................. 447
16.1 Process Mining as a Bridge Between Data Mining and Business
Process Management ....................... 447
16.2 Challenges............................. 449
16.3 Start Today!............................ 451
References .................................. 453
Index..................................... 463
|
any_adam_object | 1 |
author | Aalst, Wil van der 1966- |
author_GND | (DE-588)121921115 |
author_facet | Aalst, Wil van der 1966- |
author_role | aut |
author_sort | Aalst, Wil van der 1966- |
author_variant | w v d a wvd wvda |
building | Verbundindex |
bvnumber | BV043636649 |
classification_rvk | ST 265 ST 530 ST 601 QP 340 |
classification_tum | DAT 620f WIR 546f |
ctrlnum | (OCoLC)945132117 (DE-599)DNB108878030X |
dewey-full | 004 658.500285 |
dewey-hundreds | 000 - Computer science, information, general works 600 - Technology (Applied sciences) |
dewey-ones | 004 - Computer science 658 - General management |
dewey-raw | 004 658.500285 |
dewey-search | 004 658.500285 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works 650 - Management and auxiliary services |
discipline | Informatik Wirtschaftswissenschaften |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03825nam a2200913 c 4500</leader><controlfield tag="001">BV043636649</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200507 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">160622s2016 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">16,N11</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">16,A27</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">108878030X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662498507</subfield><subfield code="c">Festeinband : circa EUR 64.19 (DE) (freier Preis) , circa EUR 65.99 (AT) (freier Preis), circa sfr 66.00 (freier Preis)</subfield><subfield code="9">978-3-662-49850-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662570418</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-3-662-57041-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)945132117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB108878030X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-523</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.500285</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 265</subfield><subfield code="0">(DE-625)143634:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 340</subfield><subfield code="0">(DE-625)141861:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 546f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">650</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aalst, Wil van der</subfield><subfield code="d">1966-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121921115</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Process mining</subfield><subfield code="b">data science in action</subfield><subfield code="c">Wil van der Aalst</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">[2016]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xix, 467 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Software Engineering</subfield><subfield code="0">(DE-588)4116521-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessmanagement</subfield><subfield code="0">(DE-588)4353072-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prozessmodell</subfield><subfield code="0">(DE-588)4237203-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Betriebliches Informationssystem</subfield><subfield code="0">(DE-588)4069386-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">JPP</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">KJQ</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">UM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Big Data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Business Information Systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Business Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Business Process Management</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Data Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Workflow Management</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prozessmanagement</subfield><subfield code="0">(DE-588)4353072-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Betriebliches Informationssystem</subfield><subfield code="0">(DE-588)4069386-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Prozessmodell</subfield><subfield code="0">(DE-588)4237203-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Daten</subfield><subfield code="0">(DE-588)4135391-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Software Engineering</subfield><subfield code="0">(DE-588)4116521-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Prozessmanagement</subfield><subfield code="0">(DE-588)4353072-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Betriebliches Informationssystem</subfield><subfield code="0">(DE-588)4069386-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Prozessmodell</subfield><subfield code="0">(DE-588)4237203-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-662-49851-4</subfield><subfield code="w">(DE-604)BV043545973</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=a755893269c84c0583616dc17589acbd&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029050562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029050562</subfield></datafield></record></collection> |
id | DE-604.BV043636649 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:41:14Z |
institution | BVB |
isbn | 9783662498507 9783662570418 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029050562 |
oclc_num | 945132117 |
open_access_boolean | |
owner | DE-523 DE-862 DE-BY-FWS DE-703 DE-83 DE-11 DE-2070s DE-861 DE-N2 DE-473 DE-BY-UBG DE-1051 DE-91G DE-BY-TUM DE-860 DE-355 DE-BY-UBR DE-20 |
owner_facet | DE-523 DE-862 DE-BY-FWS DE-703 DE-83 DE-11 DE-2070s DE-861 DE-N2 DE-473 DE-BY-UBG DE-1051 DE-91G DE-BY-TUM DE-860 DE-355 DE-BY-UBR DE-20 |
physical | xix, 467 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Springer |
record_format | marc |
spellingShingle | Aalst, Wil van der 1966- Process mining data science in action Daten (DE-588)4135391-2 gnd Datenmanagement (DE-588)4213132-7 gnd Big Data (DE-588)4802620-7 gnd Software Engineering (DE-588)4116521-4 gnd Data Mining (DE-588)4428654-5 gnd Prozessmanagement (DE-588)4353072-2 gnd Prozessmodell (DE-588)4237203-3 gnd Betriebliches Informationssystem (DE-588)4069386-7 gnd Informatik (DE-588)4026894-9 gnd |
subject_GND | (DE-588)4135391-2 (DE-588)4213132-7 (DE-588)4802620-7 (DE-588)4116521-4 (DE-588)4428654-5 (DE-588)4353072-2 (DE-588)4237203-3 (DE-588)4069386-7 (DE-588)4026894-9 |
title | Process mining data science in action |
title_auth | Process mining data science in action |
title_exact_search | Process mining data science in action |
title_full | Process mining data science in action Wil van der Aalst |
title_fullStr | Process mining data science in action Wil van der Aalst |
title_full_unstemmed | Process mining data science in action Wil van der Aalst |
title_short | Process mining |
title_sort | process mining data science in action |
title_sub | data science in action |
topic | Daten (DE-588)4135391-2 gnd Datenmanagement (DE-588)4213132-7 gnd Big Data (DE-588)4802620-7 gnd Software Engineering (DE-588)4116521-4 gnd Data Mining (DE-588)4428654-5 gnd Prozessmanagement (DE-588)4353072-2 gnd Prozessmodell (DE-588)4237203-3 gnd Betriebliches Informationssystem (DE-588)4069386-7 gnd Informatik (DE-588)4026894-9 gnd |
topic_facet | Daten Datenmanagement Big Data Software Engineering Data Mining Prozessmanagement Prozessmodell Betriebliches Informationssystem Informatik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=a755893269c84c0583616dc17589acbd&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029050562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aalstwilvander processminingdatascienceinaction |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Stammgelände, Lehrbuchsammlung
Signatur: |
0003 DAT 620f 2019 L 192(2)
Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |
Exemplar 2 | Ausleihbar Am Standort |
Exemplar 3 | Ausleihbar Am Standort |
Exemplar 4 | Ausleihbar Ausgeliehen – Rückgabe bis: 24.03.2025 |
Exemplar 5 | Ausleihbar Am Standort |
Handapparate (nicht verfügbar)
Signatur: |
0048 DAT 620 2013 A 3794(2)
Lageplan |
---|---|
Exemplar 1 | Dauerhaft ausgeliehen Ausgeliehen – Rückgabe bis: 31.12.9999 |
Teilbibliothek Mathematik & Informatik
Signatur: |
0102 DAT 620f 2013 A 3794(2)
Lageplan |
---|---|
Exemplar 1 | Ausleihbar Am Standort |