Euclidean geometry and its subgeometries:
Saved in:
Main Authors: | , , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
[Basel]
Birkhäuser
[2015]
|
Subjects: | |
Links: | https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 https://doi.org/10.1007/978-3-319-23775-6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
Physical Description: | 1 Online Ressource (XIX, 527 Seiten, 59 illus) |
ISBN: | 9783319237756 |
DOI: | 10.1007/978-3-319-23775-6 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043309475 | ||
003 | DE-604 | ||
005 | 20200929 | ||
007 | cr|uuu---uuuuu | ||
008 | 160125s2015 xx o|||| 00||| eng d | ||
020 | |a 9783319237756 |c Online |9 978-3-319-23775-6 | ||
024 | 7 | |a 10.1007/978-3-319-23775-6 |2 doi | |
035 | |a (OCoLC)944061498 | ||
035 | |a (DE-599)BVBBV043309475 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-20 |a DE-739 |a DE-634 |a DE-703 |a DE-861 |a DE-83 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Specht, Edward John |d 1915-2011 |e Verfasser |0 (DE-588)1084012030 |4 aut | |
245 | 1 | 0 | |a Euclidean geometry and its subgeometries |c Edward John Specht (1915–2011), Harold Trainer Jones (1925–1995), Keith G. Calkins, Donald H. Rhoads |
264 | 1 | |a [Basel] |b Birkhäuser |c [2015] | |
264 | 4 | |c © 2015 | |
300 | |a 1 Online Ressource (XIX, 527 Seiten, 59 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a History | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Jones, Harold Trainer |d 1925-1995 |e Verfasser |0 (DE-588)1084012162 |4 aut | |
700 | 1 | |a Calkins, Keith G. |d 1958- |e Verfasser |0 (DE-588)1084012804 |4 aut | |
700 | 1 | |a Rhoads, Donald |e Verfasser |0 (DE-588)1084013010 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-319-23774-9 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-319-23775-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Springer Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Abstract |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q UBY_PDA_SMA | |
940 | 1 | |q ZDB-2-SMA_2015 | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028730164 | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-861 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-91 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-19 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-703 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-20 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-319-23775-6 |l DE-739 |p ZDB-2-SMA |x Verlag |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2165811 |
---|---|
_version_ | 1821932417177354240 |
adam_text | EUCLIDEAN GEOMETRY AND ITS SUBGEOMETRIES
/ SPECHT, EDWARD JOHN
: 2015
TABLE OF CONTENTS / INHALTSVERZEICHNIS
PREFACE
PRELIMINARIES AND INCIDENCE GEOMETRY (I)
AFFINE GEOMETRY: INCIDENCE WITH PARALLELISM (IP)
COLLINEATIONS OF AN AFFINE PLANE (CAP)
INCIDENCE AND BETWEENNESS (IB)
PASCH GEOMETRY (PSH)
ORDERING A LINE IN THE PASCH PLANE (ORD)
COLLINEATIONS PRESERVING BETWEENNESS (COBE)
NEUTRAL GEOMETRY (NEUT)
FREE SEGMENTS OF A NEUTRAL PLANE (FSEG)
ROTATIONS ABOUT A POINT OF A NEUTRAL PLANE (ROT)
EUCLIDEAN GEOMETRY BASICS (EUC)
ISOMETRIES OF A EUCLIDEAN PLANE (ISM)
DILATIONS OF A EUCLIDEAN PLANE (DLN)
EVERY LINE IN A EUCLIDEAN PLANE IS AN ORDERED FIELD (OF)
SIMILARITY ON A EUCLIDEAN PLANE (SIM)
AXIAL AFFINITIES OF A EUCLIDEAN PLANE (AX)
RATIONAL POINTS ON A LINE (QX).-A LINE AS REAL NUMBERS (REAL);
COORDINATIZATION OFA PLANE (RR)
BELINEATIONS ON A EUCLIDEAN/LUB PLANE (AA)
RATIOS OF SENSED SEGMENTS (RS)
CONSISTENCY AND INDEPENDENCE OF AXIOMS; OTHER MATTERS INVOLVING MODELS
REFERENCES
INDEX
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
EUCLIDEAN GEOMETRY AND ITS SUBGEOMETRIES
/ SPECHT, EDWARD JOHN
: 2015
ABSTRACT / INHALTSTEXT
IN THIS MONOGRAPH, THE AUTHORS PRESENT A MODERN DEVELOPMENT OF EUCLIDEAN
GEOMETRY FROM INDEPENDENT AXIOMS, USING UP-TO-DATE LANGUAGE AND
PROVIDING DETAILED PROOFS. THE AXIOMS FOR INCIDENCE, BETWEENNESS, AND
PLANE SEPARATION ARE CLOSE TO THOSE OF HILBERT. THIS IS THE ONLY
AXIOMATIC TREATMENT OF EUCLIDEAN GEOMETRY THAT USES AXIOMS NOT INVOLVING
METRIC NOTIONS AND THAT EXPLORES CONGRUENCE AND ISOMETRIES BY MEANS OF
REFLECTION MAPPINGS. THE AUTHORS PRESENT THIRTEEN AXIOMS IN SEQUENCE,
PROVING AS MANY THEOREMS AS POSSIBLE AT EACH STAGE AND, IN THE PROCESS,
BUILDING UP SUBGEOMETRIES, MOST NOTABLY THE PASCH AND NEUTRAL
GEOMETRIES. STANDARD TOPICS SUCH AS THE CONGRUENCE THEOREMS FOR
TRIANGLES, EMBEDDING THE REAL NUMBERS IN A LINE, AND COORDINATIZATION OF
THE PLANE ARE INCLUDED, AS WELL AS THEOREMS OF PYTHAGORAS, DESARGUES,
PAPPAS, MENELAUS, AND CEVA. THE FINAL CHAPTER COVERS CONSISTENCY AND
INDEPENDENCE OF AXIOMS, AS WELL AS INDEPENDENCE OF DEFINITION
PROPERTIES. THERE ARE OVER 300 EXERCISES; SOLUTIONS TO MANY OF THESE,
INCLUDING ALL THAT ARE NEEDED FOR THIS DEVELOPMENT, ARE AVAILABLE ONLINE
AT THE HOMEPAGE FOR THE BOOK AT WWW.SPRINGER.COM. SUPPLEMENTARY MATERIAL
IS AVAILABLE ONLINE COVERING CONSTRUCTION OF COMPLEX NUMBERS, ARC
LENGTH, THE CIRCULAR FUNCTIONS, ANGLE MEASURE, AND THE POLYGONAL FORM OF
THE JORDAN CURVE THEOREM. EUCLIDEAN GEOMETRY AND ITS SUBGEOMETRIES IS
INTENDED FOR ADVANCED STUDENTS AND MATURE MATHEMATICIANS, BUT THE PROOFS
ARE THOROUGHLY WORKED OUT TO MAKE IT ACCESSIBLE TO UNDERGRADUATE
STUDENTS AS WELL. IT CAN BE REGARDED AS A COMPLETION, UPDATING, AND
EXPANSION OF HILBERT S WORK, FILLING A GAP IN THE EXISTING LITERATURE
DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
|
any_adam_object | 1 |
author | Specht, Edward John 1915-2011 Jones, Harold Trainer 1925-1995 Calkins, Keith G. 1958- Rhoads, Donald |
author_GND | (DE-588)1084012030 (DE-588)1084012162 (DE-588)1084012804 (DE-588)1084013010 |
author_facet | Specht, Edward John 1915-2011 Jones, Harold Trainer 1925-1995 Calkins, Keith G. 1958- Rhoads, Donald |
author_role | aut aut aut aut |
author_sort | Specht, Edward John 1915-2011 |
author_variant | e j s ej ejs h t j ht htj k g c kg kgc d r dr |
building | Verbundindex |
bvnumber | BV043309475 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)944061498 (DE-599)BVBBV043309475 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-319-23775-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03138nam a2200625zc 4500</leader><controlfield tag="001">BV043309475</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">160125s2015 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319237756</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-23775-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-23775-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)944061498</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043309475</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Specht, Edward John</subfield><subfield code="d">1915-2011</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1084012030</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euclidean geometry and its subgeometries</subfield><subfield code="c">Edward John Specht (1915–2011), Harold Trainer Jones (1925–1995), Keith G. Calkins, Donald H. Rhoads</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Basel]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (XIX, 527 Seiten, 59 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Harold Trainer</subfield><subfield code="d">1925-1995</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1084012162</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Calkins, Keith G.</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1084012804</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rhoads, Donald</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1084013010</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-319-23774-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028730164</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-23775-6</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043309475 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:33:23Z |
institution | BVB |
isbn | 9783319237756 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028730164 |
oclc_num | 944061498 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-703 DE-861 DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-739 DE-634 DE-703 DE-861 DE-83 |
physical | 1 Online Ressource (XIX, 527 Seiten, 59 illus) |
psigel | ZDB-2-SMA UBY_PDA_SMA ZDB-2-SMA_2015 |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Birkhäuser |
record_format | marc |
spellingShingle | Specht, Edward John 1915-2011 Jones, Harold Trainer 1925-1995 Calkins, Keith G. 1958- Rhoads, Donald Euclidean geometry and its subgeometries Mathematics Geometry History History of Mathematical Sciences Geschichte Mathematik Euklidische Geometrie (DE-588)4137555-5 gnd |
subject_GND | (DE-588)4137555-5 |
title | Euclidean geometry and its subgeometries |
title_auth | Euclidean geometry and its subgeometries |
title_exact_search | Euclidean geometry and its subgeometries |
title_full | Euclidean geometry and its subgeometries Edward John Specht (1915–2011), Harold Trainer Jones (1925–1995), Keith G. Calkins, Donald H. Rhoads |
title_fullStr | Euclidean geometry and its subgeometries Edward John Specht (1915–2011), Harold Trainer Jones (1925–1995), Keith G. Calkins, Donald H. Rhoads |
title_full_unstemmed | Euclidean geometry and its subgeometries Edward John Specht (1915–2011), Harold Trainer Jones (1925–1995), Keith G. Calkins, Donald H. Rhoads |
title_short | Euclidean geometry and its subgeometries |
title_sort | euclidean geometry and its subgeometries |
topic | Mathematics Geometry History History of Mathematical Sciences Geschichte Mathematik Euklidische Geometrie (DE-588)4137555-5 gnd |
topic_facet | Mathematics Geometry History History of Mathematical Sciences Geschichte Mathematik Euklidische Geometrie |
url | https://doi.org/10.1007/978-3-319-23775-6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028730164&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT spechtedwardjohn euclideangeometryanditssubgeometries AT jonesharoldtrainer euclideangeometryanditssubgeometries AT calkinskeithg euclideangeometryanditssubgeometries AT rhoadsdonald euclideangeometryanditssubgeometries |