Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Hamiltonian partial differenti...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Corporate Author: Conference on Hamiltonian PDEs: Analysis, Computations and Applications Toronto (Author)
Other Authors: Guyenne, Philippe (Editor)
Format: Electronic Conference Proceedings eBook
Language:English
Published: New York Springer [2015]
Series:Fields Institute communications volume 75
Subjects:
Mathematics
Dynamics
Ergodic theory
Functional analysis
Partial differential equations
Gravitation
Partial Differential Equations
Classical and Quantum Gravitation, Relativity Theory
Dynamical Systems and Ergodic Theory
Functional Analysis
Mathematik
Partielle Differentialgleichung
Konferenzschrift > 2014 > Toronto
Links:https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
https://doi.org/10.1007/978-1-4939-2950-4
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632429&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632429&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:1 Online Ressource (X, 449 Seiten, 47 illus., 19 illus. in color)
ISBN:9781493929504
ISSN:1069-5265
DOI:10.1007/978-1-4939-2950-4
Staff View

MARC

LEADER 00000nam a2200000zcb4500
001 BV043209268
003 DE-604
005 20200929
007 cr|uuu---uuuuu
008 151215s2015 xx o|||| 10||| eng d
020 |a 9781493929504  |c Online  |9 978-1-4939-2950-4 
024 7 |a 10.1007/978-1-4939-2950-4  |2 doi 
035 |a (OCoLC)923657654 
035 |a (DE-599)BVBBV043209268 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-703  |a DE-20  |a DE-739  |a DE-634  |a DE-861  |a DE-83 
082 0 |a 515.353  |2 23 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a MAT 000  |2 stub 
111 2 |a Conference on Hamiltonian PDEs: Analysis, Computations and Applications  |d 2014  |c Toronto  |j Verfasser  |0 (DE-588)1093595760  |4 aut 
245 1 0 |a Hamiltonian partial differential equations and applications  |c Philippe Guyenne, David Nicholls, Catherine Sulem, editors 
264 1 |a New York  |b Springer  |c [2015] 
264 4 |c © 2015 
300 |a 1 Online Ressource (X, 449 Seiten, 47 illus., 19 illus. in color) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Fields Institute communications  |v volume 75  |x 1069-5265 
650 4 |a Mathematics 
650 4 |a Dynamics 
650 4 |a Ergodic theory 
650 4 |a Functional analysis 
650 4 |a Partial differential equations 
650 4 |a Gravitation 
650 4 |a Partial Differential Equations 
650 4 |a Classical and Quantum Gravitation, Relativity Theory 
650 4 |a Dynamical Systems and Ergodic Theory 
650 4 |a Functional Analysis 
650 4 |a Mathematik 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |y 2014  |z Toronto  |2 gnd-content 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Guyenne, Philippe  |0 (DE-588)1079243623  |4 edt 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-1-4939-2949-8 
830 0 |a Fields Institute communications  |v volume 75  |w (DE-604)BV043634349  |9 75 
856 4 0 |u https://doi.org/10.1007/978-1-4939-2950-4  |x Verlag  |3 Volltext 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632429&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632429&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Abstract 
912 |a ZDB-2-SMA 
940 1 |q UBY_PDA_SMA 
940 1 |q ZDB-2-SMA_2015 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028632429 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-1-4939-2950-4  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Record in the Search Index

DE-BY-TUM_katkey 2159824
_version_ 1821932392248508416
adam_text HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS / : 2015 TABLE OF CONTENTS / INHALTSVERZEICHNIS HAMILTONIAN STRUCTURE, FLUID REPRESENTATION AND STABILITY FOR THEVLASOV–DIRAC–BENNEY EQUATION (C. BARDOS, N. BESSE) ANALYSIS OF ENHANCED DIFFUSION IN TAYLOR DISPERSION VIA A MODEL PROBLEM (M. BECK, O. CHAUDHARY, C.E. WAYNE) NORMAL FORM TRANSFORMATIONS FOR CAPILLARY-GRAVITY WATER WAVES (W. CRAIG, C. SULEM) ON A FLUID-PARTICLE INTERACTION MODEL: GLOBAL IN TIME WEAK SOLUTIONS WITHIN A MOVING DOMAIN IN R3 (S. DOBOSZCZAK, K. TRIVISA) ENVELOPE EQUATIONS FOR THREE-DIMENSIONAL GRAVITY AND FLEXURAL-GRAVITY WAVES BASED ON A HAMILTONIAN APPROACH (P. GUYENNE) DISSIPATION OF A NARROW-BANDED SURFACE WATER WAVES (D. HENDERSON, G.K. RAJAN, H. SEGUR).-THE KELVIN–HELMHOLTZ INSTABILITIES IN TWO-FLUIDS SHALLOW WATER MODELS (D. LANNES, M. MING) SOME ANALYTIC RESULTS ON THE FPU PARADOX (D. BAMBUSI, A. CARATI, A. MAIOCCHI, A. MASPERO).-A NASH–MOSER APPROACH TO KAM THEORY (M. BERTI, P. BOLLE).-ON THE SPECTRAL AND ORBITAL STABILITY OF SPATIALLY PERIODIC STATIONARY SOLUTIONSOF GENERALIZED KORTEWEG–DE VRIES EQUATIONS (T. KAPITULA, B. DECONINCK).-TIME-AVERAGING FOR WEAKLY NONLINEAR CGL EQUATIONS WITH ARBITRARY POTENTIALS (G. HUANG, S. KUKSIN, A. MAIOCCHI).-PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM NOISE IN INFLATIONARY COSMOLOGY (R.H. BRANDENBERGER).-LOCAL ISOMETRIC IMMERSIONS OF PSEUDO-SPHERICAL SURFACES AND EVOLUTION EQUATIONS (N. KAHOUADJI, N. KAMRAN, K. TENENBLAT).-IST VERSUS PDE, A COMPARATIVE STUDY (C. KLEIN, J.-C. SAUT) DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS / : 2015 ABSTRACT / INHALTSTEXT THIS BOOK IS A UNIQUE SELECTION OF WORK BY WORLD-CLASS EXPERTS EXPLORING THE LATEST DEVELOPMENTS IN HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS. TOPICS COVERED WITHIN ARE REPRESENTATIVE OF THE FIELD’S WIDE SCOPE, INCLUDING KAM AND NORMAL FORM THEORIES, PERTURBATION AND VARIATIONAL METHODS, INTEGRABLE SYSTEMS, STABILITY OF NONLINEAR SOLUTIONS AS WELL AS APPLICATIONS TO COSMOLOGY, FLUID MECHANICS AND WATER WAVES. THE VOLUME CONTAINS BOTH SURVEYS AND ORIGINAL RESEARCH PAPERS AND GIVES A CONCISE OVERVIEW OF THE ABOVE TOPICS, WITH RESULTS RANGING FROM MATHEMATICAL MODELING TO RIGOROUS ANALYSIS AND NUMERICAL SIMULATION. IT WILL BE OF PARTICULAR INTEREST TO GRADUATE STUDENTS AS WELL AS RESEARCHERS IN MATHEMATICS AND PHYSICS, WHO WISH TO LEARN MORE ABOUT THE POWERFUL AND ELEGANT ANALYTICAL TECHNIQUES FOR HAMILTONIAN PARTIAL DIFFERENTIAL EQUATIONS DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
any_adam_object 1
author2 Guyenne, Philippe
author2_role edt
author2_variant p g pg
author_GND (DE-588)1079243623
author_corporate Conference on Hamiltonian PDEs: Analysis, Computations and Applications Toronto
author_corporate_role aut
author_facet Guyenne, Philippe
Conference on Hamiltonian PDEs: Analysis, Computations and Applications Toronto
author_sort Conference on Hamiltonian PDEs: Analysis, Computations and Applications Toronto
building Verbundindex
bvnumber BV043209268
classification_rvk SK 540
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (OCoLC)923657654
(DE-599)BVBBV043209268
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-1-4939-2950-4
format Electronic
Conference Proceeding
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03534nam a2200709zcb4500</leader><controlfield tag="001">BV043209268</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151215s2015 xx o|||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781493929504</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4939-2950-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4939-2950-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)923657654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043209268</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="111" ind1="2" ind2=" "><subfield code="a">Conference on Hamiltonian PDEs: Analysis, Computations and Applications</subfield><subfield code="d">2014</subfield><subfield code="c">Toronto</subfield><subfield code="j">Verfasser</subfield><subfield code="0">(DE-588)1093595760</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian partial differential equations and applications</subfield><subfield code="c">Philippe Guyenne, David Nicholls, Catherine Sulem, editors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">[2015]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online Ressource (X, 449 Seiten, 47 illus., 19 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fields Institute communications</subfield><subfield code="v">volume 75</subfield><subfield code="x">1069-5265</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gravitation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical and Quantum Gravitation, Relativity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2014</subfield><subfield code="z">Toronto</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guyenne, Philippe</subfield><subfield code="0">(DE-588)1079243623</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-1-4939-2949-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fields Institute communications</subfield><subfield code="v">volume 75</subfield><subfield code="w">(DE-604)BV043634349</subfield><subfield code="9">75</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=028632429&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=028632429&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028632429</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4939-2950-4</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre (DE-588)1071861417 Konferenzschrift 2014 Toronto gnd-content
genre_facet Konferenzschrift 2014 Toronto
id DE-604.BV043209268
illustrated Not Illustrated
indexdate 2024-12-20T17:31:12Z
institution BVB
institution_GND (DE-588)1093595760
isbn 9781493929504
issn 1069-5265
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028632429
oclc_num 923657654
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-703
DE-20
DE-739
DE-634
DE-861
DE-83
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-703
DE-20
DE-739
DE-634
DE-861
DE-83
physical 1 Online Ressource (X, 449 Seiten, 47 illus., 19 illus. in color)
psigel ZDB-2-SMA
UBY_PDA_SMA
ZDB-2-SMA_2015
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Springer
record_format marc
series Fields Institute communications
series2 Fields Institute communications
spellingShingle Hamiltonian partial differential equations and applications
Fields Institute communications
Mathematics
Dynamics
Ergodic theory
Functional analysis
Partial differential equations
Gravitation
Partial Differential Equations
Classical and Quantum Gravitation, Relativity Theory
Dynamical Systems and Ergodic Theory
Functional Analysis
Mathematik
Partielle Differentialgleichung (DE-588)4044779-0 gnd
subject_GND (DE-588)4044779-0
(DE-588)1071861417
title Hamiltonian partial differential equations and applications
title_auth Hamiltonian partial differential equations and applications
title_exact_search Hamiltonian partial differential equations and applications
title_full Hamiltonian partial differential equations and applications Philippe Guyenne, David Nicholls, Catherine Sulem, editors
title_fullStr Hamiltonian partial differential equations and applications Philippe Guyenne, David Nicholls, Catherine Sulem, editors
title_full_unstemmed Hamiltonian partial differential equations and applications Philippe Guyenne, David Nicholls, Catherine Sulem, editors
title_short Hamiltonian partial differential equations and applications
title_sort hamiltonian partial differential equations and applications
topic Mathematics
Dynamics
Ergodic theory
Functional analysis
Partial differential equations
Gravitation
Partial Differential Equations
Classical and Quantum Gravitation, Relativity Theory
Dynamical Systems and Ergodic Theory
Functional Analysis
Mathematik
Partielle Differentialgleichung (DE-588)4044779-0 gnd
topic_facet Mathematics
Dynamics
Ergodic theory
Functional analysis
Partial differential equations
Gravitation
Partial Differential Equations
Classical and Quantum Gravitation, Relativity Theory
Dynamical Systems and Ergodic Theory
Functional Analysis
Mathematik
Partielle Differentialgleichung
Konferenzschrift 2014 Toronto
url https://doi.org/10.1007/978-1-4939-2950-4
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632429&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028632429&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV043634349
work_keys_str_mv AT conferenceonhamiltonianpdesanalysiscomputationsandapplicationstoronto hamiltonianpartialdifferentialequationsandapplications
AT guyennephilippe hamiltonianpartialdifferentialequationsandapplications
  • Availability
Order (Login required)
Read online
Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline