Activity learning: discovering, recognizing, and predicting human behavior from sensor data
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Hoboken, New Jersey
Wiley
2015
|
Schriftenreihe: | Wiley series on parallel and distributed computing
|
Schlagwörter: | |
Links: | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462 |
Umfang: | 1 Online-Ressource |
ISBN: | 1119010233 1119010241 111901025X 9781119010234 9781119010241 9781119010258 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042734461 | ||
003 | DE-604 | ||
005 | 20170105 | ||
007 | cr|uuu---uuuuu | ||
008 | 150804s2015 xx o|||| 00||| eng d | ||
020 | |a 1119010233 |9 1-119-01023-3 | ||
020 | |a 1119010241 |9 1-119-01024-1 | ||
020 | |a 111901025X |9 1-119-01025-X | ||
020 | |a 9781119010234 |9 978-1-119-01023-4 | ||
020 | |a 9781119010241 |9 978-1-119-01024-1 | ||
020 | |a 9781119010258 |c Online |9 978-1-119-01025-8 | ||
035 | |a (OCoLC)900565386 | ||
035 | |a (DE-599)BVBBV042734461 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
082 | 0 | |a 371.3 |2 23 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a PSY 215f |2 stub | ||
100 | 1 | |a Cook, Diane J. |d 1963- |e Verfasser |0 (DE-588)133086534 |4 aut | |
245 | 1 | 0 | |a Activity learning |b discovering, recognizing, and predicting human behavior from sensor data |c Diane J. Cook, Narayanan C. Krishnan |
264 | 1 | |a Hoboken, New Jersey |b Wiley |c 2015 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Wiley series on parallel and distributed computing | |
505 | 8 | |a "The book provides an in-depth look at computational approaches to activity learning from sensor data"-- | |
505 | 8 | |a Includes bibliographical references and index | |
505 | 8 | |a Machine generated contents note: 1 Introduction 2 Activities 2.1 Definitions 2.2 Classes of Activities 2.3 Additional Reading 3 Sensing 3.1 Sensors Used for Activity Learning 3.2 Sample Sensor Datasets 3.3 Features 3.4 Multisensor Fusion 3.5 Additional Reading 4 Machine Learning 4.1 Supervised Learning Framework 4.2 Naïve Bayes Classifier 4.3 Gaussian Mixture Model 4.4 Hidden Markov Model 4.5 Decision Tree 4.6 Support Vector Machine 4.7 Conditional Random Field 4.8 Combining Classifier Models 4.9 Dimensionality Reduction 4.10 Additional Reading 5 Activity Recognition 5.1 Activity Segmentation 5.2 Sliding Windows 5.3 Unsupervised Segmentation 5.4 Measuring Performance 5.5 Additional Reading 6 Activity Discovery 6.1 Zero-Shot Learning 6.2 Sequence Mining 6.3 Clustering 6.4 Topic Models 6.5 Measuring Performance 6.6 Additional Reading 7 Activity Prediction 7.1 Activity Sequence Prediction 7.2 Activity Forecasting 7.3 Probabilistic Graph-Based Activity Prediction 7.4 Rule-Based Activity Timing Prediction 7.5 Measuring Performance 7.6 Additional Reading 8 Activity Learning in the Wild 8.1 Collecting Annotated Sensor Data 8.2 Transfer Learning 8.3 Multi-Label Learning 8.4 Activity Learning for Multiple Individuals 8.5 Additional Reading 9 Applications of Activity Learning 9.1 Health 9.2 Activity-Aware Services 9.3 Security and Emergency Management 9.4 Activity Reconstruction, Expression and Visualization 9.5 Analyzing Human Dynamics 9.6 Additional Reading 10 The Future of Activity Learning Appendix: Sample Activity Data Bibliography | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Electronics / Digital |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Sensors |2 bisacsh | |
650 | 7 | |a COMPUTERS / Database Management / Data Mining |2 bisacsh | |
650 | 7 | |a EDUCATION / Administration / General |2 bisacsh | |
650 | 7 | |a EDUCATION / Organizations & Institutions |2 bisacsh | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Active learning |x Data processing | |
650 | 4 | |a Detectors |x Data processing | |
650 | 4 | |a Multisensor data fusion | |
650 | 0 | 7 | |a Verhalten |0 (DE-588)4062860-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensorsystem |0 (DE-588)4307964-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenauswertung |0 (DE-588)4131193-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lernen |0 (DE-588)4035408-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lernen |0 (DE-588)4035408-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Verhalten |0 (DE-588)4062860-7 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 2 | |a Datenauswertung |0 (DE-588)4131193-0 |D s |
689 | 1 | 3 | |a Sensorsystem |0 (DE-588)4307964-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Krishnan, Narayanan C. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-118-89376-0 |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462 |x Aggregator |3 Volltext |
912 | |a ZDB-4-NLEBK | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028165424 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462 |l DE-91 |p ZDB-4-NLEBK |q TUM_PDA_EBSCO_EDU_gekauft |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2122347 |
---|---|
_version_ | 1821932207021752320 |
any_adam_object | |
author | Cook, Diane J. 1963- Krishnan, Narayanan C. |
author_GND | (DE-588)133086534 |
author_facet | Cook, Diane J. 1963- Krishnan, Narayanan C. |
author_role | aut aut |
author_sort | Cook, Diane J. 1963- |
author_variant | d j c dj djc n c k nc nck |
building | Verbundindex |
bvnumber | BV042734461 |
classification_rvk | ST 300 |
classification_tum | PSY 215f |
collection | ZDB-4-NLEBK |
contents | "The book provides an in-depth look at computational approaches to activity learning from sensor data"-- Includes bibliographical references and index Machine generated contents note: 1 Introduction 2 Activities 2.1 Definitions 2.2 Classes of Activities 2.3 Additional Reading 3 Sensing 3.1 Sensors Used for Activity Learning 3.2 Sample Sensor Datasets 3.3 Features 3.4 Multisensor Fusion 3.5 Additional Reading 4 Machine Learning 4.1 Supervised Learning Framework 4.2 Naïve Bayes Classifier 4.3 Gaussian Mixture Model 4.4 Hidden Markov Model 4.5 Decision Tree 4.6 Support Vector Machine 4.7 Conditional Random Field 4.8 Combining Classifier Models 4.9 Dimensionality Reduction 4.10 Additional Reading 5 Activity Recognition 5.1 Activity Segmentation 5.2 Sliding Windows 5.3 Unsupervised Segmentation 5.4 Measuring Performance 5.5 Additional Reading 6 Activity Discovery 6.1 Zero-Shot Learning 6.2 Sequence Mining 6.3 Clustering 6.4 Topic Models 6.5 Measuring Performance 6.6 Additional Reading 7 Activity Prediction 7.1 Activity Sequence Prediction 7.2 Activity Forecasting 7.3 Probabilistic Graph-Based Activity Prediction 7.4 Rule-Based Activity Timing Prediction 7.5 Measuring Performance 7.6 Additional Reading 8 Activity Learning in the Wild 8.1 Collecting Annotated Sensor Data 8.2 Transfer Learning 8.3 Multi-Label Learning 8.4 Activity Learning for Multiple Individuals 8.5 Additional Reading 9 Applications of Activity Learning 9.1 Health 9.2 Activity-Aware Services 9.3 Security and Emergency Management 9.4 Activity Reconstruction, Expression and Visualization 9.5 Analyzing Human Dynamics 9.6 Additional Reading 10 The Future of Activity Learning Appendix: Sample Activity Data Bibliography |
ctrlnum | (OCoLC)900565386 (DE-599)BVBBV042734461 |
dewey-full | 371.3 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 371 - Schools and their activities; special education |
dewey-raw | 371.3 |
dewey-search | 371.3 |
dewey-sort | 3371.3 |
dewey-tens | 370 - Education |
discipline | Pädagogik Informatik Psychologie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04638nam a2200721zc 4500</leader><controlfield tag="001">BV042734461</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170105 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150804s2015 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119010233</subfield><subfield code="9">1-119-01023-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1119010241</subfield><subfield code="9">1-119-01024-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111901025X</subfield><subfield code="9">1-119-01025-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119010234</subfield><subfield code="9">978-1-119-01023-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119010241</subfield><subfield code="9">978-1-119-01024-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119010258</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-119-01025-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)900565386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042734461</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">371.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PSY 215f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cook, Diane J.</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133086534</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Activity learning</subfield><subfield code="b">discovering, recognizing, and predicting human behavior from sensor data</subfield><subfield code="c">Diane J. Cook, Narayanan C. Krishnan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">Wiley</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley series on parallel and distributed computing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">"The book provides an in-depth look at computational approaches to activity learning from sensor data"--</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Machine generated contents note: 1 Introduction 2 Activities 2.1 Definitions 2.2 Classes of Activities 2.3 Additional Reading 3 Sensing 3.1 Sensors Used for Activity Learning 3.2 Sample Sensor Datasets 3.3 Features 3.4 Multisensor Fusion 3.5 Additional Reading 4 Machine Learning 4.1 Supervised Learning Framework 4.2 Naïve Bayes Classifier 4.3 Gaussian Mixture Model 4.4 Hidden Markov Model 4.5 Decision Tree 4.6 Support Vector Machine 4.7 Conditional Random Field 4.8 Combining Classifier Models 4.9 Dimensionality Reduction 4.10 Additional Reading 5 Activity Recognition 5.1 Activity Segmentation 5.2 Sliding Windows 5.3 Unsupervised Segmentation 5.4 Measuring Performance 5.5 Additional Reading 6 Activity Discovery 6.1 Zero-Shot Learning 6.2 Sequence Mining 6.3 Clustering 6.4 Topic Models 6.5 Measuring Performance 6.6 Additional Reading 7 Activity Prediction 7.1 Activity Sequence Prediction 7.2 Activity Forecasting 7.3 Probabilistic Graph-Based Activity Prediction 7.4 Rule-Based Activity Timing Prediction 7.5 Measuring Performance 7.6 Additional Reading 8 Activity Learning in the Wild 8.1 Collecting Annotated Sensor Data 8.2 Transfer Learning 8.3 Multi-Label Learning 8.4 Activity Learning for Multiple Individuals 8.5 Additional Reading 9 Applications of Activity Learning 9.1 Health 9.2 Activity-Aware Services 9.3 Security and Emergency Management 9.4 Activity Reconstruction, Expression and Visualization 9.5 Analyzing Human Dynamics 9.6 Additional Reading 10 The Future of Activity Learning Appendix: Sample Activity Data Bibliography</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Electronics / Digital</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Sensors</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Database Management / Data Mining</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EDUCATION / Administration / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">EDUCATION / Organizations & Institutions</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active learning</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multisensor data fusion</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verhalten</subfield><subfield code="0">(DE-588)4062860-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensorsystem</subfield><subfield code="0">(DE-588)4307964-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lernen</subfield><subfield code="0">(DE-588)4035408-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lernen</subfield><subfield code="0">(DE-588)4035408-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Verhalten</subfield><subfield code="0">(DE-588)4062860-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Sensorsystem</subfield><subfield code="0">(DE-588)4307964-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krishnan, Narayanan C.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-118-89376-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028165424</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="q">TUM_PDA_EBSCO_EDU_gekauft</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042734461 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:18:31Z |
institution | BVB |
isbn | 1119010233 1119010241 111901025X 9781119010234 9781119010241 9781119010258 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028165424 |
oclc_num | 900565386 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource |
psigel | ZDB-4-NLEBK ZDB-4-NLEBK TUM_PDA_EBSCO_EDU_gekauft |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Wiley |
record_format | marc |
series2 | Wiley series on parallel and distributed computing |
spellingShingle | Cook, Diane J. 1963- Krishnan, Narayanan C. Activity learning discovering, recognizing, and predicting human behavior from sensor data "The book provides an in-depth look at computational approaches to activity learning from sensor data"-- Includes bibliographical references and index Machine generated contents note: 1 Introduction 2 Activities 2.1 Definitions 2.2 Classes of Activities 2.3 Additional Reading 3 Sensing 3.1 Sensors Used for Activity Learning 3.2 Sample Sensor Datasets 3.3 Features 3.4 Multisensor Fusion 3.5 Additional Reading 4 Machine Learning 4.1 Supervised Learning Framework 4.2 Naïve Bayes Classifier 4.3 Gaussian Mixture Model 4.4 Hidden Markov Model 4.5 Decision Tree 4.6 Support Vector Machine 4.7 Conditional Random Field 4.8 Combining Classifier Models 4.9 Dimensionality Reduction 4.10 Additional Reading 5 Activity Recognition 5.1 Activity Segmentation 5.2 Sliding Windows 5.3 Unsupervised Segmentation 5.4 Measuring Performance 5.5 Additional Reading 6 Activity Discovery 6.1 Zero-Shot Learning 6.2 Sequence Mining 6.3 Clustering 6.4 Topic Models 6.5 Measuring Performance 6.6 Additional Reading 7 Activity Prediction 7.1 Activity Sequence Prediction 7.2 Activity Forecasting 7.3 Probabilistic Graph-Based Activity Prediction 7.4 Rule-Based Activity Timing Prediction 7.5 Measuring Performance 7.6 Additional Reading 8 Activity Learning in the Wild 8.1 Collecting Annotated Sensor Data 8.2 Transfer Learning 8.3 Multi-Label Learning 8.4 Activity Learning for Multiple Individuals 8.5 Additional Reading 9 Applications of Activity Learning 9.1 Health 9.2 Activity-Aware Services 9.3 Security and Emergency Management 9.4 Activity Reconstruction, Expression and Visualization 9.5 Analyzing Human Dynamics 9.6 Additional Reading 10 The Future of Activity Learning Appendix: Sample Activity Data Bibliography TECHNOLOGY & ENGINEERING / Electronics / Digital bisacsh TECHNOLOGY & ENGINEERING / Sensors bisacsh COMPUTERS / Database Management / Data Mining bisacsh EDUCATION / Administration / General bisacsh EDUCATION / Organizations & Institutions bisacsh Datenverarbeitung Active learning Data processing Detectors Data processing Multisensor data fusion Verhalten (DE-588)4062860-7 gnd Sensorsystem (DE-588)4307964-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Datenauswertung (DE-588)4131193-0 gnd Lernen (DE-588)4035408-8 gnd |
subject_GND | (DE-588)4062860-7 (DE-588)4307964-7 (DE-588)4193754-5 (DE-588)4131193-0 (DE-588)4035408-8 |
title | Activity learning discovering, recognizing, and predicting human behavior from sensor data |
title_auth | Activity learning discovering, recognizing, and predicting human behavior from sensor data |
title_exact_search | Activity learning discovering, recognizing, and predicting human behavior from sensor data |
title_full | Activity learning discovering, recognizing, and predicting human behavior from sensor data Diane J. Cook, Narayanan C. Krishnan |
title_fullStr | Activity learning discovering, recognizing, and predicting human behavior from sensor data Diane J. Cook, Narayanan C. Krishnan |
title_full_unstemmed | Activity learning discovering, recognizing, and predicting human behavior from sensor data Diane J. Cook, Narayanan C. Krishnan |
title_short | Activity learning |
title_sort | activity learning discovering recognizing and predicting human behavior from sensor data |
title_sub | discovering, recognizing, and predicting human behavior from sensor data |
topic | TECHNOLOGY & ENGINEERING / Electronics / Digital bisacsh TECHNOLOGY & ENGINEERING / Sensors bisacsh COMPUTERS / Database Management / Data Mining bisacsh EDUCATION / Administration / General bisacsh EDUCATION / Organizations & Institutions bisacsh Datenverarbeitung Active learning Data processing Detectors Data processing Multisensor data fusion Verhalten (DE-588)4062860-7 gnd Sensorsystem (DE-588)4307964-7 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Datenauswertung (DE-588)4131193-0 gnd Lernen (DE-588)4035408-8 gnd |
topic_facet | TECHNOLOGY & ENGINEERING / Electronics / Digital TECHNOLOGY & ENGINEERING / Sensors COMPUTERS / Database Management / Data Mining EDUCATION / Administration / General EDUCATION / Organizations & Institutions Datenverarbeitung Active learning Data processing Detectors Data processing Multisensor data fusion Verhalten Sensorsystem Maschinelles Lernen Datenauswertung Lernen |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=948462 |
work_keys_str_mv | AT cookdianej activitylearningdiscoveringrecognizingandpredictinghumanbehaviorfromsensordata AT krishnannarayananc activitylearningdiscoveringrecognizingandpredictinghumanbehaviorfromsensordata |