Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Ideals, varieties, and algorit...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Cox, David A. 1948- (VerfasserIn), Little, John (VerfasserIn), O'Shea, Donal 1952- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham [u.a.] Springer 2015
Ausgabe:4. ed.
Schriftenreihe:Undergraduate texts in mathematics
Schlagwörter:
Mathematics
Geometry, algebraic
Algebra
Computer software
Logic, Symbolic and mathematical
Algebraic Geometry
Commutative Rings and Algebras
Mathematical Logic and Foundations
Mathematical Software
Mathematik
Datenverarbeitung
Algebraische Geometrie
Algorithmische Geometrie
Kommutative Algebra
Computeralgebra
Links:https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/978-3-319-16721-3
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Umfang:1 Online-Ressource (XVI, 646 S.) 95 illus., 10 illus. in color
ISBN:9783319167213
DOI:10.1007/978-3-319-16721-3
Internformat

MARC

LEADER 00000nam a2200000zc 4500
001 BV042544502
003 DE-604
005 20210913
007 cr|uuu---uuuuu
008 150506s2015 xx a||| o|||| 00||| eng d
020 |a 9783319167213  |c Online  |9 978-3-319-16721-3 
024 7 |a 10.1007/978-3-319-16721-3  |2 doi 
035 |a (OCoLC)910404318 
035 |a (DE-599)BVBBV042544502 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-91  |a DE-19  |a DE-703  |a DE-20  |a DE-739  |a DE-634  |a DE-861  |a DE-83 
082 0 |a 516.35  |2 22 
082 0 |a 516.35  |2 23 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
084 |a MAT 535f  |2 stub 
084 |a MAT 000  |2 stub 
084 |a MAT 130f  |2 stub 
084 |a MAT 140f  |2 stub 
100 1 |a Cox, David A.  |d 1948-  |e Verfasser  |0 (DE-588)137410832  |4 aut 
245 1 0 |a Ideals, varieties, and algorithms  |b an introduction to computational algebraic geometry and commutative algebra  |c David A. Cox ; John Little ; Donal O'Shea 
250 |a 4. ed. 
264 1 |a Cham [u.a.]  |b Springer  |c 2015 
300 |a 1 Online-Ressource (XVI, 646 S.)  |b 95 illus., 10 illus. in color 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Undergraduate texts in mathematics 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Algebra 
650 4 |a Computer software 
650 4 |a Logic, Symbolic and mathematical 
650 4 |a Algebraic Geometry 
650 4 |a Commutative Rings and Algebras 
650 4 |a Mathematical Logic and Foundations 
650 4 |a Mathematical Software 
650 4 |a Mathematik 
650 0 7 |a Datenverarbeitung  |0 (DE-588)4011152-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Algorithmische Geometrie  |0 (DE-588)4130267-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Kommutative Algebra  |0 (DE-588)4164821-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Computeralgebra  |0 (DE-588)4010449-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 0 1 |a Computeralgebra  |0 (DE-588)4010449-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Kommutative Algebra  |0 (DE-588)4164821-3  |D s 
689 1 1 |a Computeralgebra  |0 (DE-588)4010449-7  |D s 
689 1 |5 DE-604 
689 2 0 |a Kommutative Algebra  |0 (DE-588)4164821-3  |D s 
689 2 1 |a Datenverarbeitung  |0 (DE-588)4011152-0  |D s 
689 2 |8 1\p  |5 DE-604 
689 3 0 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 3 1 |a Algorithmische Geometrie  |0 (DE-588)4130267-9  |D s 
689 3 |8 2\p  |5 DE-604 
700 1 |a Little, John  |e Verfasser  |4 aut 
700 1 |a O'Shea, Donal  |d 1952-  |e Verfasser  |0 (DE-588)113289731  |4 aut 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-3-319-16720-6 
856 4 0 |u https://doi.org/10.1007/978-3-319-16721-3  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Abstract 
912 |a ZDB-2-SMA 
940 1 |q UBY_PDA_SMA 
940 1 |q ZDB-2-SMA_2015 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027978508 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-861  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-16721-3  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2110261
_version_ 1821935334544375809
adam_text IDEALS, VARIETIES, AND ALGORITHMS / COX, DAVID A. : 2015 TABLE OF CONTENTS / INHALTSVERZEICHNIS PREFACE NOTATION FOR SETSAND FUNCTIONS 1. GEOMETRY, ALGEBRA, AND ALGORITHMS 2. GROEBNER BASES 3. ELIMINATION THEORY 4.THE ALGEBRA-GEOMETRY DICTIONARY 5. POLYNOMIAL AND RATIONAL FUNCTIONS ON A VARIETY 6. ROBOTICS AND AUTOMATIC GEOMETRIC THEOREM PROVING 7. INVARIANT THEORY OF FINITE GROUPS 8. PROJECTIVE ALGEBRAIC GEOMETRY 9. THE DIMENSION OF A VARIETY 10.ADDITIONAL GROEBNER BASIS ALGORITHMS APPENDIX A. SOME CONCEPTS FROM ALGEBRA APPENDIX B. PSEUDOCODE APPENDIX C. COMPUTER ALGEBRA SYSTEMS APPENDIX D. INDEPENDENT PROJECTS REFERENCES INDEX DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. IDEALS, VARIETIES, AND ALGORITHMS / COX, DAVID A. : 2015 ABSTRACT / INHALTSTEXT THIS TEXT COVERS TOPICS IN ALGEBRAIC GEOMETRY AND COMMUTATIVE ALGEBRA WITH A STRONG PERSPECTIVE TOWARD PRACTICAL AND COMPUTATIONAL ASPECTS. THE FIRST FOUR CHAPTERS FORM THE CORE OF THE BOOK. A COMPREHENSIVE CHART IN THE PREFACE ILLUSTRATES A VARIETY OF WAYS TO PROCEED WITH THE MATERIAL ONCE THESE CHAPTERS ARE COVERED. IN ADDITION TO THE FUNDAMENTALS OF ALGEBRAIC GEOMETRY—THE ELIMINATION THEOREM, THE EXTENSION THEOREM, THE CLOSURE THEOREM, AND THE NULLSTELLENSATZ—THIS NEW EDITION INCORPORATES SEVERAL SUBSTANTIAL CHANGES, ALL OF WHICH ARE LISTED IN THE PREFACE. THE LARGEST REVISION INCORPORATES A NEW CHAPTER (TEN), WHICH PRESENTS SOME OF THE ESSENTIALS OF PROGRESS MADE OVER THE LAST DECADES IN COMPUTING GROEBNER BASES. THE BOOK ALSO INCLUDES CURRENT COMPUTER ALGEBRA MATERIAL IN APPENDIX C AND UPDATED INDEPENDENT PROJECTS (APPENDIX D).THE BOOK MAY SERVE AS A FIRST OR SECOND COURSE IN UNDERGRADUATE ABSTRACT ALGEBRA AND, WITH SOME SUPPLEMENTATION PERHAPS, FOR BEGINNING GRADUATE LEVEL COURSES IN ALGEBRAIC GEOMETRY OR COMPUTATIONAL ALGEBRA. PREREQUISITES FOR THE READER INCLUDE LINEAR ALGEBRA AND A PROOF-ORIENTED COURSE. IT IS ASSUMED THAT THE READER HAS ACCESS TO A COMPUTER ALGEBRA SYSTEM. APPENDIX C DESCRIBES FEATURES OF MAPLE™, MATHEMATICA, AND SAGE, AS WELL AS OTHER SYSTEMS THAT ARE MOST RELEVANT TO THE TEXT. PSEUDOCODE IS USED IN THE TEXT; APPENDIX B CAREFULLY DESCRIBES THE PSEUDOCODE USED. FROM THE REVIEWS OF PREVIOUS EDITIONS: “…THE BOOK GIVES AN INTRODUCTION TO BUCHBERGER’S ALGORITHM WITH APPLICATIONS TO SYZYGIES, HILBERT POLYNOMIALS, PRIMARY DECOMPOSITIONS. THERE IS AN INTRODUCTION TO CLASSICAL ALGEBRAIC GEOMETRY WITH APPLICATIONS TO THE IDEAL MEMBERSHIP PROBLEM, SOLVING POLYNOMIAL EQUATIONS, AND ELIMINATION THEORY. …THE BOOK IS WELL-WRITTEN.…THE REVIEWER IS SURE THAT IT WILL BE AN EXCELLENT GUIDE TO INTRODUCE FURTHER UNDERGRADUATES IN THE ALGORITHMIC ASPECT OF COMMUTATIVE ALGEBRA AND ALGEBRAIC GEOMETRY.” —PETER SCHENZEL, ZBMATH, 2007 “I CONSIDER THE BOOK TO BE WONDERFUL. ... THE EXPOSITION IS VERY CLEAR, THERE ARE MANY HELPFUL PICTURES, AND THERE ARE A GREAT MANY INSTRUCTIVE EXERCISES, SOME QUITE CHALLENGING ... OFFERS THE HEART AND SOUL OF MODERN COMMUTATIVE AND ALGEBRAIC GEOMETRY.” —THE AMERICAN MATHEMATICAL MONTHLY DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
any_adam_object 1
author Cox, David A. 1948-
Little, John
O'Shea, Donal 1952-
author_GND (DE-588)137410832
(DE-588)113289731
author_facet Cox, David A. 1948-
Little, John
O'Shea, Donal 1952-
author_role aut
aut
aut
author_sort Cox, David A. 1948-
author_variant d a c da dac
j l jl
d o do
building Verbundindex
bvnumber BV042544502
classification_rvk SK 240
classification_tum MAT 535f
MAT 000
MAT 130f
MAT 140f
collection ZDB-2-SMA
ctrlnum (OCoLC)910404318
(DE-599)BVBBV042544502
dewey-full 516.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.35
dewey-search 516.35
dewey-sort 3516.35
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-16721-3
edition 4. ed.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04291nam a2200913zc 4500</leader><controlfield tag="001">BV042544502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210913 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150506s2015 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319167213</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-16721-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-16721-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)910404318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042544502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 535f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cox, David A.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137410832</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ideals, varieties, and algorithms</subfield><subfield code="b">an introduction to computational algebraic geometry and commutative algebra</subfield><subfield code="c">David A. Cox ; John Little ; Donal O'Shea</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 646 S.)</subfield><subfield code="b">95 illus., 10 illus. in color</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Software</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Little, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Shea, Donal</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113289731</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-319-16720-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027978508&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027978508&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UBY_PDA_SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2015</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027978508</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-16721-3</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV042544502
illustrated Illustrated
indexdate 2024-12-20T17:14:00Z
institution BVB
isbn 9783319167213
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027978508
oclc_num 910404318
open_access_boolean
owner DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-703
DE-20
DE-739
DE-634
DE-861
DE-83
owner_facet DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-703
DE-20
DE-739
DE-634
DE-861
DE-83
physical 1 Online-Ressource (XVI, 646 S.) 95 illus., 10 illus. in color
psigel ZDB-2-SMA
UBY_PDA_SMA
ZDB-2-SMA_2015
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Springer
record_format marc
series2 Undergraduate texts in mathematics
spellingShingle Cox, David A. 1948-
Little, John
O'Shea, Donal 1952-
Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
Mathematics
Geometry, algebraic
Algebra
Computer software
Logic, Symbolic and mathematical
Algebraic Geometry
Commutative Rings and Algebras
Mathematical Logic and Foundations
Mathematical Software
Mathematik
Datenverarbeitung (DE-588)4011152-0 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
Algorithmische Geometrie (DE-588)4130267-9 gnd
Kommutative Algebra (DE-588)4164821-3 gnd
Computeralgebra (DE-588)4010449-7 gnd
subject_GND (DE-588)4011152-0
(DE-588)4001161-6
(DE-588)4130267-9
(DE-588)4164821-3
(DE-588)4010449-7
title Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
title_auth Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
title_exact_search Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
title_full Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea
title_fullStr Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea
title_full_unstemmed Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David A. Cox ; John Little ; Donal O'Shea
title_short Ideals, varieties, and algorithms
title_sort ideals varieties and algorithms an introduction to computational algebraic geometry and commutative algebra
title_sub an introduction to computational algebraic geometry and commutative algebra
topic Mathematics
Geometry, algebraic
Algebra
Computer software
Logic, Symbolic and mathematical
Algebraic Geometry
Commutative Rings and Algebras
Mathematical Logic and Foundations
Mathematical Software
Mathematik
Datenverarbeitung (DE-588)4011152-0 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
Algorithmische Geometrie (DE-588)4130267-9 gnd
Kommutative Algebra (DE-588)4164821-3 gnd
Computeralgebra (DE-588)4010449-7 gnd
topic_facet Mathematics
Geometry, algebraic
Algebra
Computer software
Logic, Symbolic and mathematical
Algebraic Geometry
Commutative Rings and Algebras
Mathematical Logic and Foundations
Mathematical Software
Mathematik
Datenverarbeitung
Algebraische Geometrie
Algorithmische Geometrie
Kommutative Algebra
Computeralgebra
url https://doi.org/10.1007/978-3-319-16721-3
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027978508&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT coxdavida idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra
AT littlejohn idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra
AT osheadonal idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra
  • Verfügbarkeit
Bestellen (Login erforderlich)
Online lesen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt