Limit Theorems for Stochastic Processes:
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer
2003
|
Edition: | Second edition |
Series: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
288 |
Subjects: | |
Links: | https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3100707 https://doi.org/10.1007/978-3-662-05265-5 |
Item Description: | Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an introduction to the theory of martingales and semimartingales, random measures stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to graduate students |
Physical Description: | 1 Online-Ressource (XX, 664 Seiten) |
ISBN: | 9783662052655 9783642078767 |
DOI: | 10.1007/978-3-662-05265-5 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423349 | ||
003 | DE-604 | ||
005 | 20210126 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 xx o|||| 00||| eng d | ||
020 | |a 9783662052655 |c Online |9 978-3-662-05265-5 | ||
020 | |a 9783642078767 |c Print |9 978-3-642-07876-7 | ||
024 | 7 | |a 10.1007/978-3-662-05265-5 |2 doi | |
035 | |a (OCoLC)863982530 | ||
035 | |a (DE-599)BVBBV042423349 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-19 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jacod, Jean |d 1944- |e Verfasser |0 (DE-588)140772421 |4 aut | |
245 | 1 | 0 | |a Limit Theorems for Stochastic Processes |c by Jean Jacod, Albert N. Shiryaev |
250 | |a Second edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer |c 2003 | |
300 | |a 1 Online-Ressource (XX, 664 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |v 288 | |
500 | |a Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an introduction to the theory of martingales and semimartingales, random measures stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to graduate students | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Grenzwertsatz |0 (DE-588)4158163-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Semimartingal |0 (DE-588)4180967-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 1 | |a Grenzwertsatz |0 (DE-588)4158163-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Semimartingal |0 (DE-588)4180967-1 |D s |
689 | 1 | 1 | |a Grenzwertsatz |0 (DE-588)4158163-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Širjaev, Alʹbert N. |d 1934- |e Sonstige |0 (DE-588)12203502X |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-05265-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
912 | |a ZDB-30-PQE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858766 | |
966 | e | |u https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3100707 |l DE-19 |p ZDB-30-PQE |q UBM_Einzelkauf21 |x Aggregator |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 2070358 |
---|---|
_version_ | 1821931360503201792 |
any_adam_object | |
author | Jacod, Jean 1944- |
author_GND | (DE-588)140772421 (DE-588)12203502X |
author_facet | Jacod, Jean 1944- |
author_role | aut |
author_sort | Jacod, Jean 1944- |
author_variant | j j jj |
building | Verbundindex |
bvnumber | BV042423349 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE ZDB-30-PQE |
ctrlnum | (OCoLC)863982530 (DE-599)BVBBV042423349 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-05265-5 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03593nam a2200601zcb4500</leader><controlfield tag="001">BV042423349</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662052655</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-05265-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642078767</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07876-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-05265-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863982530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423349</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jacod, Jean</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140772421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Limit Theorems for Stochastic Processes</subfield><subfield code="c">by Jean Jacod, Albert N. Shiryaev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 664 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">288</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Initially the theory of convergence in law of stochastic processes was developed quite independently from the theory of martingales, semimartingales and stochastic integrals. Apart from a few exceptions essentially concerning diffusion processes, it is only recently that the relation between the two theories has been thoroughly studied. The authors of this Grundlehren volume, two of the international leaders in the field, propose a systematic exposition of convergence in law for stochastic processes, from the point of view of semimartingale theory, with emphasis on results that are useful for mathematical theory and mathematical statistics. This leads them to develop in detail some particularly useful parts of the general theory of stochastic processes, such as martingale problems, and absolute continuity or contiguity results. The book contains an introduction to the theory of martingales and semimartingales, random measures stochastic integrales, Skorokhod topology, etc., as well as a large number of results which have never appeared in book form, and some entirely new results. It should be useful to the professional probabilist or mathematical statistician, and of interest also to graduate students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Semimartingal</subfield><subfield code="0">(DE-588)4180967-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Semimartingal</subfield><subfield code="0">(DE-588)4180967-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Širjaev, Alʹbert N.</subfield><subfield code="d">1934-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)12203502X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-05265-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858766</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/ub-lmu/detail.action?docID=3100707</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBM_Einzelkauf21</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042423349 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:48Z |
institution | BVB |
isbn | 9783662052655 9783642078767 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858766 |
oclc_num | 863982530 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (XX, 664 Seiten) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-30-PQE ZDB-2-SMA_Archive ZDB-30-PQE UBM_Einzelkauf21 |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
series2 | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics |
spellingShingle | Jacod, Jean 1944- Limit Theorems for Stochastic Processes Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Grenzwertsatz (DE-588)4158163-5 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Semimartingal (DE-588)4180967-1 gnd |
subject_GND | (DE-588)4158163-5 (DE-588)4057630-9 (DE-588)4180967-1 |
title | Limit Theorems for Stochastic Processes |
title_auth | Limit Theorems for Stochastic Processes |
title_exact_search | Limit Theorems for Stochastic Processes |
title_full | Limit Theorems for Stochastic Processes by Jean Jacod, Albert N. Shiryaev |
title_fullStr | Limit Theorems for Stochastic Processes by Jean Jacod, Albert N. Shiryaev |
title_full_unstemmed | Limit Theorems for Stochastic Processes by Jean Jacod, Albert N. Shiryaev |
title_short | Limit Theorems for Stochastic Processes |
title_sort | limit theorems for stochastic processes |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Grenzwertsatz (DE-588)4158163-5 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Semimartingal (DE-588)4180967-1 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Grenzwertsatz Stochastischer Prozess Semimartingal |
url | https://doi.org/10.1007/978-3-662-05265-5 |
work_keys_str_mv | AT jacodjean limittheoremsforstochasticprocesses AT sirjaevalʹbertn limittheoremsforstochasticprocesses |