Kac Algebras and Duality of Locally Compact Groups:
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1992
|
Subjects: | |
Links: | https://doi.org/10.1007/978-3-662-02813-1 |
Item Description: | This book deals with the theory of Kac algebras and their duality, elaborated independently by M. Enock and J . -M. Schwartz, and by G. I. Kac and L. I. Vajnermann in the seventies. The subject has now reached a state of maturity which fully justifies the publication of this book. Also, in recent times, the topic of "quantum groups" has become very fashionable and attracted the attention of more and more mathematicians and theoret ical physicists. One is still missing a good characterization of quantum groups among Hopf algebras, similar to the characterization of Lie groups among locally compact groups. It is thus extremely valuable to develop the general theory, as this book does, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. The original motivation of M. Enock and J. -M. Schwartz can be formulated as follows: while in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of T. Tannaka, M. G. Krein, W. F. Stinespring . . . dealing with non abelian locally compact groups. The aim is then, in the line proposed by G. I. Kac in 1961 and M. Takesaki in 1972, to find a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality |
Physical Description: | 1 Online-Ressource (X, 257 p) |
ISBN: | 9783662028131 9783642081286 |
DOI: | 10.1007/978-3-662-02813-1 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423217 | ||
003 | DE-604 | ||
005 | 20171205 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 xx o|||| 00||| eng d | ||
020 | |a 9783662028131 |c Online |9 978-3-662-02813-1 | ||
020 | |a 9783642081286 |c Print |9 978-3-642-08128-6 | ||
024 | 7 | |a 10.1007/978-3-662-02813-1 |2 doi | |
035 | |a (OCoLC)1184505608 | ||
035 | |a (DE-599)BVBBV042423217 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.55 |2 23 | |
082 | 0 | |a 512.482 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Enock, Michel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Kac Algebras and Duality of Locally Compact Groups |c by Michel Enock, Jean-Marie Schwartz |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1992 | |
300 | |a 1 Online-Ressource (X, 257 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book deals with the theory of Kac algebras and their duality, elaborated independently by M. Enock and J . -M. Schwartz, and by G. I. Kac and L. I. Vajnermann in the seventies. The subject has now reached a state of maturity which fully justifies the publication of this book. Also, in recent times, the topic of "quantum groups" has become very fashionable and attracted the attention of more and more mathematicians and theoret ical physicists. One is still missing a good characterization of quantum groups among Hopf algebras, similar to the characterization of Lie groups among locally compact groups. It is thus extremely valuable to develop the general theory, as this book does, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. The original motivation of M. Enock and J. -M. Schwartz can be formulated as follows: while in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of T. Tannaka, M. G. Krein, W. F. Stinespring . . . dealing with non abelian locally compact groups. The aim is then, in the line proposed by G. I. Kac in 1961 and M. Takesaki in 1972, to find a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Associative Rings and Algebras | |
650 | 4 | |a Non-associative Rings and Algebras | |
650 | 4 | |a Abstract Harmonic Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Dualität |0 (DE-588)4013161-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kac-Algebra |0 (DE-588)4304563-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |D s |
689 | 0 | 1 | |a Dualität |0 (DE-588)4013161-0 |D s |
689 | 0 | 2 | |a Kac-Algebra |0 (DE-588)4304563-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Schwartz, Jean-Marie |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-02813-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858634 |
Record in the Search Index
DE-BY-TUM_katkey | 2070226 |
---|---|
_version_ | 1821931358842257410 |
any_adam_object | |
author | Enock, Michel |
author_facet | Enock, Michel |
author_role | aut |
author_sort | Enock, Michel |
author_variant | m e me |
building | Verbundindex |
bvnumber | BV042423217 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184505608 (DE-599)BVBBV042423217 |
dewey-full | 512.55 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 512.482 |
dewey-search | 512.55 512.482 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-02813-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03405nam a2200589zc 4500</leader><controlfield tag="001">BV042423217</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662028131</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-02813-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081286</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08128-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02813-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184505608</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423217</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Enock, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kac Algebras and Duality of Locally Compact Groups</subfield><subfield code="c">by Michel Enock, Jean-Marie Schwartz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 257 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the theory of Kac algebras and their duality, elaborated independently by M. Enock and J . -M. Schwartz, and by G. I. Kac and L. I. Vajnermann in the seventies. The subject has now reached a state of maturity which fully justifies the publication of this book. Also, in recent times, the topic of "quantum groups" has become very fashionable and attracted the attention of more and more mathematicians and theoret ical physicists. One is still missing a good characterization of quantum groups among Hopf algebras, similar to the characterization of Lie groups among locally compact groups. It is thus extremely valuable to develop the general theory, as this book does, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. The original motivation of M. Enock and J. -M. Schwartz can be formulated as follows: while in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of T. Tannaka, M. G. Krein, W. F. Stinespring . . . dealing with non abelian locally compact groups. The aim is then, in the line proposed by G. I. Kac in 1961 and M. Takesaki in 1972, to find a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abstract Harmonic Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kac-Algebra</subfield><subfield code="0">(DE-588)4304563-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dualität</subfield><subfield code="0">(DE-588)4013161-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kac-Algebra</subfield><subfield code="0">(DE-588)4304563-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schwartz, Jean-Marie</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02813-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858634</subfield></datafield></record></collection> |
id | DE-604.BV042423217 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:48Z |
institution | BVB |
isbn | 9783662028131 9783642081286 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858634 |
oclc_num | 1184505608 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 257 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spellingShingle | Enock, Michel Kac Algebras and Duality of Locally Compact Groups Mathematics Algebra Topological Groups Harmonic analysis Topological Groups, Lie Groups Associative Rings and Algebras Non-associative Rings and Algebras Abstract Harmonic Analysis Mathematik Dualität (DE-588)4013161-0 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd Kac-Algebra (DE-588)4304563-7 gnd |
subject_GND | (DE-588)4013161-0 (DE-588)4168094-7 (DE-588)4304563-7 |
title | Kac Algebras and Duality of Locally Compact Groups |
title_auth | Kac Algebras and Duality of Locally Compact Groups |
title_exact_search | Kac Algebras and Duality of Locally Compact Groups |
title_full | Kac Algebras and Duality of Locally Compact Groups by Michel Enock, Jean-Marie Schwartz |
title_fullStr | Kac Algebras and Duality of Locally Compact Groups by Michel Enock, Jean-Marie Schwartz |
title_full_unstemmed | Kac Algebras and Duality of Locally Compact Groups by Michel Enock, Jean-Marie Schwartz |
title_short | Kac Algebras and Duality of Locally Compact Groups |
title_sort | kac algebras and duality of locally compact groups |
topic | Mathematics Algebra Topological Groups Harmonic analysis Topological Groups, Lie Groups Associative Rings and Algebras Non-associative Rings and Algebras Abstract Harmonic Analysis Mathematik Dualität (DE-588)4013161-0 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd Kac-Algebra (DE-588)4304563-7 gnd |
topic_facet | Mathematics Algebra Topological Groups Harmonic analysis Topological Groups, Lie Groups Associative Rings and Algebras Non-associative Rings and Algebras Abstract Harmonic Analysis Mathematik Dualität Lokal kompakte Gruppe Kac-Algebra |
url | https://doi.org/10.1007/978-3-662-02813-1 |
work_keys_str_mv | AT enockmichel kacalgebrasanddualityoflocallycompactgroups AT schwartzjeanmarie kacalgebrasanddualityoflocallycompactgroups |