Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1967
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete
35 |
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-3-642-85844-4 |
Beschreibung: | The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo logical algebra. Our category is thus the" topological" analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category ,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology) |
Umfang: | 1 Online-Ressource |
ISBN: | 9783642858444 9783642858468 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-85844-4 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423052 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1967 xx o|||| 00||| eng d | ||
020 | |a 9783642858444 |c Online |9 978-3-642-85844-4 | ||
020 | |a 9783642858468 |c Print |9 978-3-642-85846-8 | ||
024 | 7 | |a 10.1007/978-3-642-85844-4 |2 doi | |
035 | |a (OCoLC)864001257 | ||
035 | |a (DE-599)BVBBV042423052 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gabriel, Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Calculus of Fractions and Homotopy Theory |c by Peter Gabriel, Michel Zisman |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1967 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete |v 35 |x 0071-1136 | |
500 | |a The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo logical algebra. Our category is thus the" topological" analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category ,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Homotopietheorie |0 (DE-588)4128142-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bruchrechnung |0 (DE-588)4008387-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Homotopie |0 (DE-588)4025803-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bruchrechnung |0 (DE-588)4008387-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Homotopie |0 (DE-588)4025803-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Homotopietheorie |0 (DE-588)4128142-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Zisman, Michel |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-85844-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858469 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2070061 |
---|---|
_version_ | 1821931356183068673 |
any_adam_object | |
author | Gabriel, Peter |
author_facet | Gabriel, Peter |
author_role | aut |
author_sort | Gabriel, Peter |
author_variant | p g pg |
building | Verbundindex |
bvnumber | BV042423052 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864001257 (DE-599)BVBBV042423052 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-85844-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03448nam a2200565zcb4500</leader><controlfield tag="001">BV042423052</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1967 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642858444</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-85844-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642858468</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-85846-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-85844-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864001257</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423052</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gabriel, Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calculus of Fractions and Homotopy Theory</subfield><subfield code="c">by Peter Gabriel, Michel Zisman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1967</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">35</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The main purpose of the present work is to present to the reader a particularly nice category for the study of homotopy, namely the homo topic category (IV). This category is, in fact, - according to Chapter VII and a well-known theorem of J. H. C. WHITEHEAD - equivalent to the category of CW-complexes modulo homotopy, i.e. the category whose objects are spaces of the homotopy type of a CW-complex and whose morphisms are homotopy classes of continuous mappings between such spaces. It is also equivalent (I, 1.3) to a category of fractions of the category of topological spaces modulo homotopy, and to the category of Kan complexes modulo homotopy (IV). In order to define our homotopic category, it appears useful to follow as closely as possible methods which have proved efficacious in homo logical algebra. Our category is thus the" topological" analogue of the derived category of an abelian category (VERDIER). The algebraic machinery upon which this work is essentially based includes the usual grounding in category theory - summarized in the Dictionary - and the theory of categories of fractions which forms the subject of the first chapter of the book. The merely topological machinery reduces to a few properties of Kelley spaces (Chapters I and III). The starting point of our study is the category ,10 Iff of simplicial sets (C.S.S. complexes or semi-simplicial sets in a former terminology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bruchrechnung</subfield><subfield code="0">(DE-588)4008387-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bruchrechnung</subfield><subfield code="0">(DE-588)4008387-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Homotopie</subfield><subfield code="0">(DE-588)4025803-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Homotopietheorie</subfield><subfield code="0">(DE-588)4128142-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zisman, Michel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-85844-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858469</subfield></datafield></record></collection> |
id | DE-604.BV042423052 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:48Z |
institution | BVB |
isbn | 9783642858444 9783642858468 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858469 |
oclc_num | 864001257 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1967 |
publishDateSearch | 1967 |
publishDateSort | 1967 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete |
spellingShingle | Gabriel, Peter Calculus of Fractions and Homotopy Theory Mathematics Mathematics, general Mathematik Homotopietheorie (DE-588)4128142-1 gnd Bruchrechnung (DE-588)4008387-1 gnd Homotopie (DE-588)4025803-8 gnd |
subject_GND | (DE-588)4128142-1 (DE-588)4008387-1 (DE-588)4025803-8 |
title | Calculus of Fractions and Homotopy Theory |
title_auth | Calculus of Fractions and Homotopy Theory |
title_exact_search | Calculus of Fractions and Homotopy Theory |
title_full | Calculus of Fractions and Homotopy Theory by Peter Gabriel, Michel Zisman |
title_fullStr | Calculus of Fractions and Homotopy Theory by Peter Gabriel, Michel Zisman |
title_full_unstemmed | Calculus of Fractions and Homotopy Theory by Peter Gabriel, Michel Zisman |
title_short | Calculus of Fractions and Homotopy Theory |
title_sort | calculus of fractions and homotopy theory |
topic | Mathematics Mathematics, general Mathematik Homotopietheorie (DE-588)4128142-1 gnd Bruchrechnung (DE-588)4008387-1 gnd Homotopie (DE-588)4025803-8 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Homotopietheorie Bruchrechnung Homotopie |
url | https://doi.org/10.1007/978-3-642-85844-4 |
work_keys_str_mv | AT gabrielpeter calculusoffractionsandhomotopytheory AT zismanmichel calculusoffractionsandhomotopytheory |