Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
26 |
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-3-642-78201-5 |
Beschreibung: | Quasiregular Mappings extend quasiconformal theory to the noninjective case.They give a natural and beautiful generalization of the geometric aspects ofthe theory of analytic functions of one complex variable to Euclidean n-space or, more generally, to Riemannian n-manifolds. This book is a self-contained exposition of the subject. A braod spectrum of results of both analytic and geometric character are presented, and the methods vary accordingly. The main tools are the variational integral method and the extremal length method, both of which are thoroughly developed here. Reshetnyak's basic theorem on discreteness and openness is used from the beginning, but the proof by means of variational integrals is postponed until near the end. Thus, the method of extremal length is being used at an early stage and leads, among other things, to geometric proofs of Picard-type theorems and a defect relation, which are some of the high points of the present book |
Umfang: | 1 Online-Ressource (X, 213p. 5 illus) |
ISBN: | 9783642782015 9783642782039 |
ISSN: | 0071-1136 |
DOI: | 10.1007/978-3-642-78201-5 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423000 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 xx o|||| 00||| eng d | ||
020 | |a 9783642782015 |c Online |9 978-3-642-78201-5 | ||
020 | |a 9783642782039 |c Print |9 978-3-642-78203-9 | ||
024 | 7 | |a 10.1007/978-3-642-78201-5 |2 doi | |
035 | |a (OCoLC)863798195 | ||
035 | |a (DE-599)BVBBV042423000 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Rickman, Seppo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quasiregular Mappings |c by Seppo Rickman |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (X, 213p. 5 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |v 26 |x 0071-1136 | |
500 | |a Quasiregular Mappings extend quasiconformal theory to the noninjective case.They give a natural and beautiful generalization of the geometric aspects ofthe theory of analytic functions of one complex variable to Euclidean n-space or, more generally, to Riemannian n-manifolds. This book is a self-contained exposition of the subject. A braod spectrum of results of both analytic and geometric character are presented, and the methods vary accordingly. The main tools are the variational integral method and the extremal length method, both of which are thoroughly developed here. Reshetnyak's basic theorem on discreteness and openness is used from the beginning, but the proof by means of variational integrals is postponed until near the end. Thus, the method of extremal length is being used at an early stage and leads, among other things, to geometric proofs of Picard-type theorems and a defect relation, which are some of the high points of the present book | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Potential theory (Mathematics) | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Potential Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quasireguläre Abbildung |0 (DE-588)4199290-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasikonforme Abbildung |0 (DE-588)4199279-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quasikonforme Abbildung |0 (DE-588)4199279-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quasireguläre Abbildung |0 (DE-588)4199290-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-78201-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858417 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2070009 |
---|---|
_version_ | 1821931353205112833 |
any_adam_object | |
author | Rickman, Seppo |
author_facet | Rickman, Seppo |
author_role | aut |
author_sort | Rickman, Seppo |
author_variant | s r sr |
building | Verbundindex |
bvnumber | BV042423000 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863798195 (DE-599)BVBBV042423000 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-78201-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03017nam a2200565zcb4500</leader><controlfield tag="001">BV042423000</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642782015</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-78201-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642782039</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-78203-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-78201-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863798195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423000</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rickman, Seppo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasiregular Mappings</subfield><subfield code="c">by Seppo Rickman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 213p. 5 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">26</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Quasiregular Mappings extend quasiconformal theory to the noninjective case.They give a natural and beautiful generalization of the geometric aspects ofthe theory of analytic functions of one complex variable to Euclidean n-space or, more generally, to Riemannian n-manifolds. This book is a self-contained exposition of the subject. A braod spectrum of results of both analytic and geometric character are presented, and the methods vary accordingly. The main tools are the variational integral method and the extremal length method, both of which are thoroughly developed here. Reshetnyak's basic theorem on discreteness and openness is used from the beginning, but the proof by means of variational integrals is postponed until near the end. Thus, the method of extremal length is being used at an early stage and leads, among other things, to geometric proofs of Picard-type theorems and a defect relation, which are some of the high points of the present book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasireguläre Abbildung</subfield><subfield code="0">(DE-588)4199290-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasikonforme Abbildung</subfield><subfield code="0">(DE-588)4199279-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quasikonforme Abbildung</subfield><subfield code="0">(DE-588)4199279-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quasireguläre Abbildung</subfield><subfield code="0">(DE-588)4199290-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-78201-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858417</subfield></datafield></record></collection> |
id | DE-604.BV042423000 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:47Z |
institution | BVB |
isbn | 9783642782015 9783642782039 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858417 |
oclc_num | 863798195 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 213p. 5 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |
spellingShingle | Rickman, Seppo Quasiregular Mappings Mathematics Functions of complex variables Potential theory (Mathematics) Global differential geometry Functions of a Complex Variable Differential Geometry Potential Theory Mathematik Quasireguläre Abbildung (DE-588)4199290-8 gnd Quasikonforme Abbildung (DE-588)4199279-9 gnd |
subject_GND | (DE-588)4199290-8 (DE-588)4199279-9 |
title | Quasiregular Mappings |
title_auth | Quasiregular Mappings |
title_exact_search | Quasiregular Mappings |
title_full | Quasiregular Mappings by Seppo Rickman |
title_fullStr | Quasiregular Mappings by Seppo Rickman |
title_full_unstemmed | Quasiregular Mappings by Seppo Rickman |
title_short | Quasiregular Mappings |
title_sort | quasiregular mappings |
topic | Mathematics Functions of complex variables Potential theory (Mathematics) Global differential geometry Functions of a Complex Variable Differential Geometry Potential Theory Mathematik Quasireguläre Abbildung (DE-588)4199290-8 gnd Quasikonforme Abbildung (DE-588)4199279-9 gnd |
topic_facet | Mathematics Functions of complex variables Potential theory (Mathematics) Global differential geometry Functions of a Complex Variable Differential Geometry Potential Theory Mathematik Quasireguläre Abbildung Quasikonforme Abbildung |
url | https://doi.org/10.1007/978-3-642-78201-5 |
work_keys_str_mv | AT rickmanseppo quasiregularmappings |