Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Subjects: | |
Links: | https://doi.org/10.1007/978-3-642-61349-4 |
Item Description: | Content and Subject Matter: This research monograph deals with two main subjects, namely the notion of equimultiplicity and the algebraic study of various graded rings in relation to blowing ups. Both subjects are clearly motivated by their use in resolving singularities of algebraic varieties, for which one of the main tools consists in blowing up the variety along an equimultiple subvariety. For equimultiplicity a unified and self-contained treatment of earlier results of two of the authors is given, establishing a notion of equimultiplicity for situations other than the classical ones. For blowing up, new results are presented on the connection with generalized Cohen-Macaulay rings. To keep this part self-contained too, a section on local cohomology and local duality for graded rings and modules is included with detailed proofs. Finally, in an appendix, the notion of equimultiplicity for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate students with basic knowledge in commutative algebra |
Physical Description: | 1 Online-Ressource (XVII, 629p. 11 illus) |
ISBN: | 9783642613494 9783642648038 |
DOI: | 10.1007/978-3-642-61349-4 |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422798 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 xx o|||| 00||| eng d | ||
020 | |a 9783642613494 |c Online |9 978-3-642-61349-4 | ||
020 | |a 9783642648038 |c Print |9 978-3-642-64803-8 | ||
024 | 7 | |a 10.1007/978-3-642-61349-4 |2 doi | |
035 | |a (OCoLC)863760673 | ||
035 | |a (DE-599)BVBBV042422798 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Herrmann, Manfred |e Verfasser |4 aut | |
245 | 1 | 0 | |a Equimultiplicity and Blowing Up |b An Algebraic Study |c by Manfred Herrmann, Ulrich Orbanz, Shin Ikeda |
246 | 1 | 3 | |a With an Appendix by B.Moonen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (XVII, 629p. 11 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Content and Subject Matter: This research monograph deals with two main subjects, namely the notion of equimultiplicity and the algebraic study of various graded rings in relation to blowing ups. Both subjects are clearly motivated by their use in resolving singularities of algebraic varieties, for which one of the main tools consists in blowing up the variety along an equimultiple subvariety. For equimultiplicity a unified and self-contained treatment of earlier results of two of the authors is given, establishing a notion of equimultiplicity for situations other than the classical ones. For blowing up, new results are presented on the connection with generalized Cohen-Macaulay rings. To keep this part self-contained too, a section on local cohomology and local duality for graded rings and modules is included with detailed proofs. Finally, in an appendix, the notion of equimultiplicity for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate students with basic knowledge in commutative algebra | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cohen-Macaulay-Ring |0 (DE-588)4200397-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aufblasung |0 (DE-588)4139570-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stellenring |0 (DE-588)4183087-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Äquimultiplizität |0 (DE-588)4200399-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Singularität |g Mathematik |0 (DE-588)4077459-4 |D s |
689 | 0 | 1 | |a Aufblasung |0 (DE-588)4139570-0 |D s |
689 | 0 | 2 | |a Äquimultiplizität |0 (DE-588)4200399-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Cohen-Macaulay-Ring |0 (DE-588)4200397-0 |D s |
689 | 1 | 1 | |a Aufblasung |0 (DE-588)4139570-0 |D s |
689 | 1 | 2 | |a Äquimultiplizität |0 (DE-588)4200399-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Aufblasung |0 (DE-588)4139570-0 |D s |
689 | 2 | 1 | |a Stellenring |0 (DE-588)4183087-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Orbanz, Ulrich |e Sonstige |4 oth | |
700 | 1 | |a Ikeda, Shin |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-61349-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858215 |
Record in the Search Index
DE-BY-TUM_katkey | 2069807 |
---|---|
_version_ | 1821931351587160064 |
any_adam_object | |
author | Herrmann, Manfred |
author_facet | Herrmann, Manfred |
author_role | aut |
author_sort | Herrmann, Manfred |
author_variant | m h mh |
building | Verbundindex |
bvnumber | BV042422798 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863760673 (DE-599)BVBBV042422798 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-61349-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03802nam a2200673zc 4500</leader><controlfield tag="001">BV042422798</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642613494</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-61349-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642648038</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-64803-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-61349-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863760673</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422798</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herrmann, Manfred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equimultiplicity and Blowing Up</subfield><subfield code="b">An Algebraic Study</subfield><subfield code="c">by Manfred Herrmann, Ulrich Orbanz, Shin Ikeda</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">With an Appendix by B.Moonen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 629p. 11 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Content and Subject Matter: This research monograph deals with two main subjects, namely the notion of equimultiplicity and the algebraic study of various graded rings in relation to blowing ups. Both subjects are clearly motivated by their use in resolving singularities of algebraic varieties, for which one of the main tools consists in blowing up the variety along an equimultiple subvariety. For equimultiplicity a unified and self-contained treatment of earlier results of two of the authors is given, establishing a notion of equimultiplicity for situations other than the classical ones. For blowing up, new results are presented on the connection with generalized Cohen-Macaulay rings. To keep this part self-contained too, a section on local cohomology and local duality for graded rings and modules is included with detailed proofs. Finally, in an appendix, the notion of equimultiplicity for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate students with basic knowledge in commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cohen-Macaulay-Ring</subfield><subfield code="0">(DE-588)4200397-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aufblasung</subfield><subfield code="0">(DE-588)4139570-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stellenring</subfield><subfield code="0">(DE-588)4183087-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Äquimultiplizität</subfield><subfield code="0">(DE-588)4200399-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Singularität</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4077459-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Aufblasung</subfield><subfield code="0">(DE-588)4139570-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Äquimultiplizität</subfield><subfield code="0">(DE-588)4200399-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Cohen-Macaulay-Ring</subfield><subfield code="0">(DE-588)4200397-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Aufblasung</subfield><subfield code="0">(DE-588)4139570-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Äquimultiplizität</subfield><subfield code="0">(DE-588)4200399-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Aufblasung</subfield><subfield code="0">(DE-588)4139570-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stellenring</subfield><subfield code="0">(DE-588)4183087-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Orbanz, Ulrich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ikeda, Shin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-61349-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858215</subfield></datafield></record></collection> |
id | DE-604.BV042422798 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:47Z |
institution | BVB |
isbn | 9783642613494 9783642648038 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858215 |
oclc_num | 863760673 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 629p. 11 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spellingShingle | Herrmann, Manfred Equimultiplicity and Blowing Up An Algebraic Study Mathematics Geometry, algebraic Algebraic Geometry Mathematik Singularität Mathematik (DE-588)4077459-4 gnd Cohen-Macaulay-Ring (DE-588)4200397-0 gnd Aufblasung (DE-588)4139570-0 gnd Stellenring (DE-588)4183087-8 gnd Äquimultiplizität (DE-588)4200399-4 gnd |
subject_GND | (DE-588)4077459-4 (DE-588)4200397-0 (DE-588)4139570-0 (DE-588)4183087-8 (DE-588)4200399-4 |
title | Equimultiplicity and Blowing Up An Algebraic Study |
title_alt | With an Appendix by B.Moonen |
title_auth | Equimultiplicity and Blowing Up An Algebraic Study |
title_exact_search | Equimultiplicity and Blowing Up An Algebraic Study |
title_full | Equimultiplicity and Blowing Up An Algebraic Study by Manfred Herrmann, Ulrich Orbanz, Shin Ikeda |
title_fullStr | Equimultiplicity and Blowing Up An Algebraic Study by Manfred Herrmann, Ulrich Orbanz, Shin Ikeda |
title_full_unstemmed | Equimultiplicity and Blowing Up An Algebraic Study by Manfred Herrmann, Ulrich Orbanz, Shin Ikeda |
title_short | Equimultiplicity and Blowing Up |
title_sort | equimultiplicity and blowing up an algebraic study |
title_sub | An Algebraic Study |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Singularität Mathematik (DE-588)4077459-4 gnd Cohen-Macaulay-Ring (DE-588)4200397-0 gnd Aufblasung (DE-588)4139570-0 gnd Stellenring (DE-588)4183087-8 gnd Äquimultiplizität (DE-588)4200399-4 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik Singularität Mathematik Cohen-Macaulay-Ring Aufblasung Stellenring Äquimultiplizität |
url | https://doi.org/10.1007/978-3-642-61349-4 |
work_keys_str_mv | AT herrmannmanfred equimultiplicityandblowingupanalgebraicstudy AT orbanzulrich equimultiplicityandblowingupanalgebraicstudy AT ikedashin equimultiplicityandblowingupanalgebraicstudy AT herrmannmanfred withanappendixbybmoonen AT orbanzulrich withanappendixbybmoonen AT ikedashin withanappendixbybmoonen |