Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Basel
Birkhäuser Basel
1988
|
Series: | DMV Seminar
11 |
Subjects: | |
Links: | https://doi.org/10.1007/978-3-0348-9167-7 |
Item Description: | These notes were prepared for the DMV-Seminar held in Düsseldorf, Schloss Mickeln from June 28 to July 5, 1987. They consist of two parts which can be read independently. The reader is presumed to have a basic education in differential and algebraic topology. Surgery theory is the basic tool for the investigation of differential and topological manifolds. A systematic development of the theory is a long and difficult task. The purpose of these notes is to describe simple examples and at the same time to give an introduction to some of the systematic parts of the theory. The first part is concerned with examples. They are related to representations of finite groups and group actions on spheres, and are considered as a generalisation of the spherical space form problem. The second part reviews the general setting of surgery theory and reports on the computation of the surgery abstraction groups. Both parts present material not covered in any textbook and also give an introduction to the literature and areas of research. 1. REPRESENTATION FORMS AND HOMOTOPY REPRESENTATIONS. Tammo tom Dieck Mathematical Institute Gottingen University Fed. Rep. of Germany Let G be a (finite) group. We consider group actions of G on spheres and spherelike spaces |
Physical Description: | 1 Online-Ressource (VIII, 115 p) |
ISBN: | 9783034891677 9783764322045 |
DOI: | 10.1007/978-3-0348-9167-7 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422314 | ||
003 | DE-604 | ||
005 | 20210222 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 xx o|||| 00||| eng d | ||
020 | |a 9783034891677 |c Online |9 978-3-0348-9167-7 | ||
020 | |a 9783764322045 |c Print |9 978-3-7643-2204-5 | ||
024 | 7 | |a 10.1007/978-3-0348-9167-7 |2 doi | |
035 | |a (OCoLC)863785213 | ||
035 | |a (DE-599)BVBBV042422314 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tom Dieck, Tammo |d 1938- |e Verfasser |0 (DE-588)124473091 |4 aut | |
245 | 1 | 0 | |a Surgery Theory and Geometry of Representations |c by Tammo Dieck, Ian Hambleton |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1988 | |
300 | |a 1 Online-Ressource (VIII, 115 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a DMV Seminar |v 11 | |
500 | |a These notes were prepared for the DMV-Seminar held in Düsseldorf, Schloss Mickeln from June 28 to July 5, 1987. They consist of two parts which can be read independently. The reader is presumed to have a basic education in differential and algebraic topology. Surgery theory is the basic tool for the investigation of differential and topological manifolds. A systematic development of the theory is a long and difficult task. The purpose of these notes is to describe simple examples and at the same time to give an introduction to some of the systematic parts of the theory. The first part is concerned with examples. They are related to representations of finite groups and group actions on spheres, and are considered as a generalisation of the spherical space form problem. The second part reviews the general setting of surgery theory and reports on the computation of the surgery abstraction groups. Both parts present material not covered in any textbook and also give an introduction to the literature and areas of research. 1. REPRESENTATION FORMS AND HOMOTOPY REPRESENTATIONS. Tammo tom Dieck Mathematical Institute Gottingen University Fed. Rep. of Germany Let G be a (finite) group. We consider group actions of G on spheres and spherelike spaces | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
650 | 0 | 7 | |a Chirurgie |g Mathematik |0 (DE-588)4200269-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chirurgie |g Mathematik |0 (DE-588)4200269-2 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hambleton, Ian |d 1946- |e Sonstige |0 (DE-588)1078391521 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-7643-2204-5 |
830 | 0 | |a DMV Seminar |v 11 |w (DE-604)BV000020322 |9 11 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9167-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027857731 |
Record in the Search Index
DE-BY-TUM_katkey | 2069323 |
---|---|
_version_ | 1821931242778525696 |
any_adam_object | |
author | Tom Dieck, Tammo 1938- |
author_GND | (DE-588)124473091 (DE-588)1078391521 |
author_facet | Tom Dieck, Tammo 1938- |
author_role | aut |
author_sort | Tom Dieck, Tammo 1938- |
author_variant | d t t dt dtt |
building | Verbundindex |
bvnumber | BV042422314 |
classification_rvk | SK 260 SK 340 SK 350 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863785213 (DE-599)BVBBV042422314 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-9167-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03321nam a2200577zcb4500</leader><controlfield tag="001">BV042422314</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210222 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034891677</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9167-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764322045</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2204-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9167-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863785213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422314</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tom Dieck, Tammo</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124473091</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Surgery Theory and Geometry of Representations</subfield><subfield code="c">by Tammo Dieck, Ian Hambleton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 115 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">DMV Seminar</subfield><subfield code="v">11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes were prepared for the DMV-Seminar held in Düsseldorf, Schloss Mickeln from June 28 to July 5, 1987. They consist of two parts which can be read independently. The reader is presumed to have a basic education in differential and algebraic topology. Surgery theory is the basic tool for the investigation of differential and topological manifolds. A systematic development of the theory is a long and difficult task. The purpose of these notes is to describe simple examples and at the same time to give an introduction to some of the systematic parts of the theory. The first part is concerned with examples. They are related to representations of finite groups and group actions on spheres, and are considered as a generalisation of the spherical space form problem. The second part reviews the general setting of surgery theory and reports on the computation of the surgery abstraction groups. Both parts present material not covered in any textbook and also give an introduction to the literature and areas of research. 1. REPRESENTATION FORMS AND HOMOTOPY REPRESENTATIONS. Tammo tom Dieck Mathematical Institute Gottingen University Fed. Rep. of Germany Let G be a (finite) group. We consider group actions of G on spheres and spherelike spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chirurgie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200269-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chirurgie</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4200269-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hambleton, Ian</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1078391521</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-7643-2204-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">DMV Seminar</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV000020322</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9167-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857731</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042422314 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:46Z |
institution | BVB |
isbn | 9783034891677 9783764322045 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857731 |
oclc_num | 863785213 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 115 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Birkhäuser Basel |
record_format | marc |
series | DMV Seminar |
series2 | DMV Seminar |
spellingShingle | Tom Dieck, Tammo 1938- Surgery Theory and Geometry of Representations DMV Seminar Science (General) Science, general Naturwissenschaft Chirurgie Mathematik (DE-588)4200269-2 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4200269-2 (DE-588)4020236-7 (DE-588)1071861417 |
title | Surgery Theory and Geometry of Representations |
title_auth | Surgery Theory and Geometry of Representations |
title_exact_search | Surgery Theory and Geometry of Representations |
title_full | Surgery Theory and Geometry of Representations by Tammo Dieck, Ian Hambleton |
title_fullStr | Surgery Theory and Geometry of Representations by Tammo Dieck, Ian Hambleton |
title_full_unstemmed | Surgery Theory and Geometry of Representations by Tammo Dieck, Ian Hambleton |
title_short | Surgery Theory and Geometry of Representations |
title_sort | surgery theory and geometry of representations |
topic | Science (General) Science, general Naturwissenschaft Chirurgie Mathematik (DE-588)4200269-2 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Science (General) Science, general Naturwissenschaft Chirurgie Mathematik Geometrie Konferenzschrift |
url | https://doi.org/10.1007/978-3-0348-9167-7 |
volume_link | (DE-604)BV000020322 |
work_keys_str_mv | AT tomdiecktammo surgerytheoryandgeometryofrepresentations AT hambletonian surgerytheoryandgeometryofrepresentations |