Scaling Limits and Models in Physical Processes:
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Basel
Birkhäuser Basel
1998
|
Series: | DMV Seminar
28 |
Subjects: | |
Links: | https://doi.org/10.1007/978-3-0348-8810-3 |
Item Description: | The first part of this volume presents the basic ideas concerning perturbation and scaling methods in the mathematical theory of dilute gases, based on Boltzmann's integro-differential equation. It is of course impossible to cover the developments of this subject in less than one hundred pages. Already in 1912 none less than David Hilbert indicated how to obtain approximate solutions of the scaled Boltzmann equation in the form of a perturbation of a parameter inversely proportional to the gas density. His paper is also reprinted as Chapter XXII of his treatise Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen. The motive for this circumstance is clearly stated in the preface to that book ("Recently I have added, to conclude, a new chapter on the kinetic theory of gases. [ . . . ]. I recognize in the theory of gases the most splendid application of the theorems concerning integral equations. ") The mathematically rigorous theory started, however, in 1933 with a paper [48] by Tage Gillis Torsten Carleman, who proved a theorem of global existence and uniqueness for a gas of hard spheres in the so-called space-homogeneous case. Many other results followed; those based on perturbation and scaling methods will be dealt with in some detail. Here, I cannot refrain from mentioning that, when Pierre-Louis Lions obtained the Fields medal (1994), the commendation quoted explicitly his work with the late Ronald DiPerna on the existence of solutions of the Boltzmann equation |
Physical Description: | 1 Online-Ressource (VI, 194 p.) 2 illus |
ISBN: | 9783034888103 9783764359850 |
DOI: | 10.1007/978-3-0348-8810-3 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422238 | ||
003 | DE-604 | ||
005 | 20170915 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 xx a||| o|||| 00||| eng d | ||
020 | |a 9783034888103 |c Online |9 978-3-0348-8810-3 | ||
020 | |a 9783764359850 |c Print |9 978-3-7643-5985-0 | ||
024 | 7 | |a 10.1007/978-3-0348-8810-3 |2 doi | |
035 | |a (OCoLC)1165550942 | ||
035 | |a (DE-599)BVBBV042422238 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cercignani, Carlo |d 1939-2010 |e Verfasser |0 (DE-588)132954184 |4 aut | |
245 | 1 | 0 | |a Scaling Limits and Models in Physical Processes |c by Carlo Cercignani, David H. Sattinger |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1998 | |
300 | |a 1 Online-Ressource (VI, 194 p.) |b 2 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a DMV Seminar |v 28 | |
500 | |a The first part of this volume presents the basic ideas concerning perturbation and scaling methods in the mathematical theory of dilute gases, based on Boltzmann's integro-differential equation. It is of course impossible to cover the developments of this subject in less than one hundred pages. Already in 1912 none less than David Hilbert indicated how to obtain approximate solutions of the scaled Boltzmann equation in the form of a perturbation of a parameter inversely proportional to the gas density. His paper is also reprinted as Chapter XXII of his treatise Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen. The motive for this circumstance is clearly stated in the preface to that book ("Recently I have added, to conclude, a new chapter on the kinetic theory of gases. [ . . . ]. I recognize in the theory of gases the most splendid application of the theorems concerning integral equations. ") The mathematically rigorous theory started, however, in 1933 with a paper [48] by Tage Gillis Torsten Carleman, who proved a theorem of global existence and uniqueness for a gas of hard spheres in the so-called space-homogeneous case. Many other results followed; those based on perturbation and scaling methods will be dealt with in some detail. Here, I cannot refrain from mentioning that, when Pierre-Louis Lions obtained the Fields medal (1994), the commendation quoted explicitly his work with the late Ronald DiPerna on the existence of solutions of the Boltzmann equation | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kinetische Gastheorie |0 (DE-588)4163881-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrables System |0 (DE-588)4114032-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Skalierungsgesetz |0 (DE-588)4205012-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare partielle Differentialgleichung |0 (DE-588)4128900-6 |D s |
689 | 0 | 1 | |a Integrables System |0 (DE-588)4114032-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kinetische Gastheorie |0 (DE-588)4163881-5 |D s |
689 | 1 | 1 | |a Skalierungsgesetz |0 (DE-588)4205012-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Sattinger, David H. |e Sonstige |4 oth | |
830 | 0 | |a DMV Seminar |v 28 |w (DE-604)BV000020322 |9 28 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8810-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027857655 |
Record in the Search Index
DE-BY-TUM_katkey | 2069247 |
---|---|
_version_ | 1821931233712537600 |
any_adam_object | |
author | Cercignani, Carlo 1939-2010 |
author_GND | (DE-588)132954184 |
author_facet | Cercignani, Carlo 1939-2010 |
author_role | aut |
author_sort | Cercignani, Carlo 1939-2010 |
author_variant | c c cc |
building | Verbundindex |
bvnumber | BV042422238 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165550942 (DE-599)BVBBV042422238 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8810-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03702nam a2200577zcb4500</leader><controlfield tag="001">BV042422238</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170915 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034888103</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8810-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764359850</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-5985-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8810-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165550942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422238</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cercignani, Carlo</subfield><subfield code="d">1939-2010</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132954184</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scaling Limits and Models in Physical Processes</subfield><subfield code="c">by Carlo Cercignani, David H. Sattinger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 194 p.)</subfield><subfield code="b">2 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">DMV Seminar</subfield><subfield code="v">28</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The first part of this volume presents the basic ideas concerning perturbation and scaling methods in the mathematical theory of dilute gases, based on Boltzmann's integro-differential equation. It is of course impossible to cover the developments of this subject in less than one hundred pages. Already in 1912 none less than David Hilbert indicated how to obtain approximate solutions of the scaled Boltzmann equation in the form of a perturbation of a parameter inversely proportional to the gas density. His paper is also reprinted as Chapter XXII of his treatise Grundzuge einer allgemeinen Theorie der linearen Integralgleichungen. The motive for this circumstance is clearly stated in the preface to that book ("Recently I have added, to conclude, a new chapter on the kinetic theory of gases. [ . . . ]. I recognize in the theory of gases the most splendid application of the theorems concerning integral equations. ") The mathematically rigorous theory started, however, in 1933 with a paper [48] by Tage Gillis Torsten Carleman, who proved a theorem of global existence and uniqueness for a gas of hard spheres in the so-called space-homogeneous case. Many other results followed; those based on perturbation and scaling methods will be dealt with in some detail. Here, I cannot refrain from mentioning that, when Pierre-Louis Lions obtained the Fields medal (1994), the commendation quoted explicitly his work with the late Ronald DiPerna on the existence of solutions of the Boltzmann equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kinetische Gastheorie</subfield><subfield code="0">(DE-588)4163881-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Skalierungsgesetz</subfield><subfield code="0">(DE-588)4205012-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4128900-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integrables System</subfield><subfield code="0">(DE-588)4114032-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kinetische Gastheorie</subfield><subfield code="0">(DE-588)4163881-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Skalierungsgesetz</subfield><subfield code="0">(DE-588)4205012-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sattinger, David H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">DMV Seminar</subfield><subfield code="v">28</subfield><subfield code="w">(DE-604)BV000020322</subfield><subfield code="9">28</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8810-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857655</subfield></datafield></record></collection> |
id | DE-604.BV042422238 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:10:46Z |
institution | BVB |
isbn | 9783034888103 9783764359850 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857655 |
oclc_num | 1165550942 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VI, 194 p.) 2 illus |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Basel |
record_format | marc |
series | DMV Seminar |
series2 | DMV Seminar |
spellingShingle | Cercignani, Carlo 1939-2010 Scaling Limits and Models in Physical Processes DMV Seminar Mathematics Mathematics, general Mathematik Kinetische Gastheorie (DE-588)4163881-5 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Integrables System (DE-588)4114032-1 gnd Skalierungsgesetz (DE-588)4205012-1 gnd |
subject_GND | (DE-588)4163881-5 (DE-588)4128900-6 (DE-588)4114032-1 (DE-588)4205012-1 |
title | Scaling Limits and Models in Physical Processes |
title_auth | Scaling Limits and Models in Physical Processes |
title_exact_search | Scaling Limits and Models in Physical Processes |
title_full | Scaling Limits and Models in Physical Processes by Carlo Cercignani, David H. Sattinger |
title_fullStr | Scaling Limits and Models in Physical Processes by Carlo Cercignani, David H. Sattinger |
title_full_unstemmed | Scaling Limits and Models in Physical Processes by Carlo Cercignani, David H. Sattinger |
title_short | Scaling Limits and Models in Physical Processes |
title_sort | scaling limits and models in physical processes |
topic | Mathematics Mathematics, general Mathematik Kinetische Gastheorie (DE-588)4163881-5 gnd Nichtlineare partielle Differentialgleichung (DE-588)4128900-6 gnd Integrables System (DE-588)4114032-1 gnd Skalierungsgesetz (DE-588)4205012-1 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Kinetische Gastheorie Nichtlineare partielle Differentialgleichung Integrables System Skalierungsgesetz |
url | https://doi.org/10.1007/978-3-0348-8810-3 |
volume_link | (DE-604)BV000020322 |
work_keys_str_mv | AT cercignanicarlo scalinglimitsandmodelsinphysicalprocesses AT sattingerdavidh scalinglimitsandmodelsinphysicalprocesses |