Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Basel
Birkhäuser Basel
1998
|
Schriftenreihe: | Progress in Mathematics
164 |
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-3-0348-8798-4 |
Beschreibung: | In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in recently developed methods. The book, reflecting the state of the art, can also be used for teaching special courses. (Mathematical Reviews) |
Umfang: | 1 Online-Ressource (XVII, 204 p.) 51 illus |
ISBN: | 9783034887984 9783034897785 |
DOI: | 10.1007/978-3-0348-8798-4 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422234 | ||
003 | DE-604 | ||
005 | 20161111 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 xx a||| o|||| 00||| eng d | ||
020 | |a 9783034887984 |c Online |9 978-3-0348-8798-4 | ||
020 | |a 9783034897785 |c Print |9 978-3-0348-9778-5 | ||
024 | 7 | |a 10.1007/978-3-0348-8798-4 |2 doi | |
035 | |a (OCoLC)863681901 | ||
035 | |a (DE-599)BVBBV042422234 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Roussarie, Robert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem |c by Robert Roussarie |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1998 | |
300 | |a 1 Online-Ressource (XVII, 204 p.) |b 51 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 164 | |
500 | |a In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in recently developed methods. The book, reflecting the state of the art, can also be used for teaching special courses. (Mathematical Reviews) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8798-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027857651 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2069243 |
---|---|
_version_ | 1821931233708343297 |
any_adam_object | |
author | Roussarie, Robert |
author_facet | Roussarie, Robert |
author_role | aut |
author_sort | Roussarie, Robert |
author_variant | r r rr |
building | Verbundindex |
bvnumber | BV042422234 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863681901 (DE-599)BVBBV042422234 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8798-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02305nam a2200409zcb4500</leader><controlfield tag="001">BV042422234</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161111 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034887984</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8798-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897785</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9778-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8798-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863681901</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422234</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roussarie, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem</subfield><subfield code="c">by Robert Roussarie</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 204 p.)</subfield><subfield code="b">51 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">164</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic family of functions in its ideal of coefficients, and asymptotic expansion of non-differentiable return maps and desingularisation. The exposition moves from classical analytic geometric methods applied to regular limit periodic sets to more recent tools for singular limit sets. The methods can be applied to theoretical problems such as Hilbert's 16th problem, but also for the purpose of establishing bifurcation diagrams of specific families as well as explicit computations. - - - The book as a whole is a well-balanced exposition that can be recommended to all those who want to gain a thorough understanding and proficiency in recently developed methods. The book, reflecting the state of the art, can also be used for teaching special courses. (Mathematical Reviews) </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8798-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857651</subfield></datafield></record></collection> |
id | DE-604.BV042422234 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:10:46Z |
institution | BVB |
isbn | 9783034887984 9783034897785 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857651 |
oclc_num | 863681901 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 204 p.) 51 illus |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spellingShingle | Roussarie, Robert Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem Mathematics Mathematics, general Mathematik |
title | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem |
title_auth | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem |
title_exact_search | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem |
title_full | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem by Robert Roussarie |
title_fullStr | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem by Robert Roussarie |
title_full_unstemmed | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem by Robert Roussarie |
title_short | Bifurcation of Planar Vector Fields and Hilbert's Sixteenth Problem |
title_sort | bifurcation of planar vector fields and hilbert s sixteenth problem |
topic | Mathematics Mathematics, general Mathematik |
topic_facet | Mathematics Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-3-0348-8798-4 |
work_keys_str_mv | AT roussarierobert bifurcationofplanarvectorfieldsandhilbertssixteenthproblem |