Metric Constrained Interpolation, Commutant Lifting and Systems:
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Basel
Birkhäuser Basel
1998
|
Series: | Operator Theory Advances and Applications
100 |
Subjects: | |
Links: | https://doi.org/10.1007/978-3-0348-8791-5 |
Item Description: | This book presents a unified approach for solving both stationary and nonstationary interpolation problems, in finite or infinite dimensions, based on the commutant lifting theorem from operator theory and the state space method from mathematical system theory. Initially the authors planned a number of papers treating nonstationary interpolation problems of Nevanlinna-Pick and Nehari type by reducing these nonstationary problems to stationary ones for operator-valued functions with operator arguments and using classical commutant lifting techniques. This reduction method required us to review and further develop the classical results for the stationary problems in this more general framework. Here the system theory turned out to be very useful for setting up the problems and for providing natural state space formulas for describing the solutions. In this way our work involved us in a much wider program than original planned. The final results of our efforts are presented here. The financial support in 1994 from the "NWO-stimulansprogramma" for the Thomas Stieltjes Institute for Mathematics in the Netherlands enabled us to start the research which lead to the present book. We also gratefully acknowledge the support from our home institutions: Indiana University at Bloomington, Purdue University at West Lafayette, Tel-Aviv University, and the Vrije Universiteit at Amsterdam. We warmly thank Dr. A.L. Sakhnovich for his carefully reading of a large part of the manuscript. Finally, Sharon Wise prepared very efficiently and with great care the troff file of this manuscript; we are grateful for her excellent typing |
Physical Description: | 1 Online-Ressource (XII, 587 p) |
ISBN: | 9783034887915 9783034897754 |
DOI: | 10.1007/978-3-0348-8791-5 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422232 | ||
003 | DE-604 | ||
005 | 20190315 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 xx o|||| 00||| eng d | ||
020 | |a 9783034887915 |c Online |9 978-3-0348-8791-5 | ||
020 | |a 9783034897754 |c Print |9 978-3-0348-9775-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8791-5 |2 doi | |
035 | |a (OCoLC)863859889 | ||
035 | |a (DE-599)BVBBV042422232 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Foiaş, Ciprian |d 1933-2020 |e Verfasser |0 (DE-588)172077648 |4 aut | |
245 | 1 | 0 | |a Metric Constrained Interpolation, Commutant Lifting and Systems |c by C. Foias, A. E. Frazho, I. Gohberg, M. A. Kaashoek |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1998 | |
300 | |a 1 Online-Ressource (XII, 587 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory Advances and Applications |v 100 | |
500 | |a This book presents a unified approach for solving both stationary and nonstationary interpolation problems, in finite or infinite dimensions, based on the commutant lifting theorem from operator theory and the state space method from mathematical system theory. Initially the authors planned a number of papers treating nonstationary interpolation problems of Nevanlinna-Pick and Nehari type by reducing these nonstationary problems to stationary ones for operator-valued functions with operator arguments and using classical commutant lifting techniques. This reduction method required us to review and further develop the classical results for the stationary problems in this more general framework. Here the system theory turned out to be very useful for setting up the problems and for providing natural state space formulas for describing the solutions. In this way our work involved us in a much wider program than original planned. The final results of our efforts are presented here. The financial support in 1994 from the "NWO-stimulansprogramma" for the Thomas Stieltjes Institute for Mathematics in the Netherlands enabled us to start the research which lead to the present book. We also gratefully acknowledge the support from our home institutions: Indiana University at Bloomington, Purdue University at West Lafayette, Tel-Aviv University, and the Vrije Universiteit at Amsterdam. We warmly thank Dr. A.L. Sakhnovich for his carefully reading of a large part of the manuscript. Finally, Sharon Wise prepared very efficiently and with great care the troff file of this manuscript; we are grateful for her excellent typing | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a H-unendlich-Kontrolltheorie |0 (DE-588)4488490-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitinvariantes System |0 (DE-588)4213493-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Liftungssatz |0 (DE-588)4265072-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutant |0 (DE-588)4265073-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitvariantes System |0 (DE-588)4190654-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zeitinvariantes System |0 (DE-588)4213493-6 |D s |
689 | 0 | 1 | |a Zeitvariantes System |0 (DE-588)4190654-8 |D s |
689 | 0 | 2 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 0 | 3 | |a Kommutant |0 (DE-588)4265073-2 |D s |
689 | 0 | 4 | |a Liftungssatz |0 (DE-588)4265072-0 |D s |
689 | 0 | 5 | |a H-unendlich-Kontrolltheorie |0 (DE-588)4488490-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Frazho, Arthur E. |e Sonstige |4 oth | |
700 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Sonstige |0 (DE-588)118915878 |4 oth | |
700 | 1 | |a Kaashoek, Marinus A. |d 1937- |e Sonstige |0 (DE-588)122738497 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8791-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027857649 |
Record in the Search Index
DE-BY-TUM_katkey | 2069241 |
---|---|
_version_ | 1821931233709391873 |
any_adam_object | |
author | Foiaş, Ciprian 1933-2020 |
author_GND | (DE-588)172077648 (DE-588)118915878 (DE-588)122738497 |
author_facet | Foiaş, Ciprian 1933-2020 |
author_role | aut |
author_sort | Foiaş, Ciprian 1933-2020 |
author_variant | c f cf |
building | Verbundindex |
bvnumber | BV042422232 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863859889 (DE-599)BVBBV042422232 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8791-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04058nam a2200613zcb4500</leader><controlfield tag="001">BV042422232</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034887915</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8791-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897754</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9775-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8791-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863859889</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Foiaş, Ciprian</subfield><subfield code="d">1933-2020</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172077648</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metric Constrained Interpolation, Commutant Lifting and Systems</subfield><subfield code="c">by C. Foias, A. E. Frazho, I. Gohberg, M. A. Kaashoek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 587 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory Advances and Applications</subfield><subfield code="v">100</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents a unified approach for solving both stationary and nonstationary interpolation problems, in finite or infinite dimensions, based on the commutant lifting theorem from operator theory and the state space method from mathematical system theory. Initially the authors planned a number of papers treating nonstationary interpolation problems of Nevanlinna-Pick and Nehari type by reducing these nonstationary problems to stationary ones for operator-valued functions with operator arguments and using classical commutant lifting techniques. This reduction method required us to review and further develop the classical results for the stationary problems in this more general framework. Here the system theory turned out to be very useful for setting up the problems and for providing natural state space formulas for describing the solutions. In this way our work involved us in a much wider program than original planned. The final results of our efforts are presented here. The financial support in 1994 from the "NWO-stimulansprogramma" for the Thomas Stieltjes Institute for Mathematics in the Netherlands enabled us to start the research which lead to the present book. We also gratefully acknowledge the support from our home institutions: Indiana University at Bloomington, Purdue University at West Lafayette, Tel-Aviv University, and the Vrije Universiteit at Amsterdam. We warmly thank Dr. A.L. Sakhnovich for his carefully reading of a large part of the manuscript. Finally, Sharon Wise prepared very efficiently and with great care the troff file of this manuscript; we are grateful for her excellent typing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">H-unendlich-Kontrolltheorie</subfield><subfield code="0">(DE-588)4488490-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitinvariantes System</subfield><subfield code="0">(DE-588)4213493-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Liftungssatz</subfield><subfield code="0">(DE-588)4265072-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutant</subfield><subfield code="0">(DE-588)4265073-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitvariantes System</subfield><subfield code="0">(DE-588)4190654-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zeitinvariantes System</subfield><subfield code="0">(DE-588)4213493-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitvariantes System</subfield><subfield code="0">(DE-588)4190654-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kommutant</subfield><subfield code="0">(DE-588)4265073-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Liftungssatz</subfield><subfield code="0">(DE-588)4265072-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">H-unendlich-Kontrolltheorie</subfield><subfield code="0">(DE-588)4488490-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frazho, Arthur E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaashoek, Marinus A.</subfield><subfield code="d">1937-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)122738497</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8791-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857649</subfield></datafield></record></collection> |
id | DE-604.BV042422232 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:46Z |
institution | BVB |
isbn | 9783034887915 9783034897754 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857649 |
oclc_num | 863859889 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 587 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory Advances and Applications |
spellingShingle | Foiaş, Ciprian 1933-2020 Metric Constrained Interpolation, Commutant Lifting and Systems Mathematics Mathematics, general Mathematik H-unendlich-Kontrolltheorie (DE-588)4488490-4 gnd Interpolation (DE-588)4162121-9 gnd Zeitinvariantes System (DE-588)4213493-6 gnd Liftungssatz (DE-588)4265072-0 gnd Kommutant (DE-588)4265073-2 gnd Zeitvariantes System (DE-588)4190654-8 gnd |
subject_GND | (DE-588)4488490-4 (DE-588)4162121-9 (DE-588)4213493-6 (DE-588)4265072-0 (DE-588)4265073-2 (DE-588)4190654-8 |
title | Metric Constrained Interpolation, Commutant Lifting and Systems |
title_auth | Metric Constrained Interpolation, Commutant Lifting and Systems |
title_exact_search | Metric Constrained Interpolation, Commutant Lifting and Systems |
title_full | Metric Constrained Interpolation, Commutant Lifting and Systems by C. Foias, A. E. Frazho, I. Gohberg, M. A. Kaashoek |
title_fullStr | Metric Constrained Interpolation, Commutant Lifting and Systems by C. Foias, A. E. Frazho, I. Gohberg, M. A. Kaashoek |
title_full_unstemmed | Metric Constrained Interpolation, Commutant Lifting and Systems by C. Foias, A. E. Frazho, I. Gohberg, M. A. Kaashoek |
title_short | Metric Constrained Interpolation, Commutant Lifting and Systems |
title_sort | metric constrained interpolation commutant lifting and systems |
topic | Mathematics Mathematics, general Mathematik H-unendlich-Kontrolltheorie (DE-588)4488490-4 gnd Interpolation (DE-588)4162121-9 gnd Zeitinvariantes System (DE-588)4213493-6 gnd Liftungssatz (DE-588)4265072-0 gnd Kommutant (DE-588)4265073-2 gnd Zeitvariantes System (DE-588)4190654-8 gnd |
topic_facet | Mathematics Mathematics, general Mathematik H-unendlich-Kontrolltheorie Interpolation Zeitinvariantes System Liftungssatz Kommutant Zeitvariantes System |
url | https://doi.org/10.1007/978-3-0348-8791-5 |
work_keys_str_mv | AT foiasciprian metricconstrainedinterpolationcommutantliftingandsystems AT frazhoarthure metricconstrainedinterpolationcommutantliftingandsystems AT gohbergyisraʿelz metricconstrainedinterpolationcommutantliftingandsystems AT kaashoekmarinusa metricconstrainedinterpolationcommutantliftingandsystems |