Spatial Patterns: Higher Order Models in Physics and Mechanics
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
45 |
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-1-4612-0135-9 |
Beschreibung: | The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations |
Umfang: | 1 Online-Ressource (XV, 343 p) |
ISBN: | 9781461201359 9780817641108 |
DOI: | 10.1007/978-1-4612-0135-9 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419449 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 xx o|||| 00||| eng d | ||
020 | |a 9781461201359 |c Online |9 978-1-4612-0135-9 | ||
020 | |a 9780817641108 |c Print |9 978-0-8176-4110-8 | ||
024 | 7 | |a 10.1007/978-1-4612-0135-9 |2 doi | |
035 | |a (OCoLC)1184307853 | ||
035 | |a (DE-599)BVBBV042419449 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.352 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Peletier, L. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spatial Patterns |b Higher Order Models in Physics and Mechanics |c by L. A. Peletier, W. C. Troy |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XV, 343 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 45 | |
500 | |a The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Physikalisches System |0 (DE-588)4174610-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ordnung n |0 (DE-588)4322729-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strukturbildung |0 (DE-588)4541700-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physikalisches System |0 (DE-588)4174610-7 |D s |
689 | 0 | 1 | |a Strukturbildung |0 (DE-588)4541700-3 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | 3 | |a Nichtlineare Differentialgleichung |0 (DE-588)4205536-2 |D s |
689 | 0 | 4 | |a Ordnung n |0 (DE-588)4322729-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Troy, W. C. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0135-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027854866 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2066458 |
---|---|
_version_ | 1821931182087995392 |
any_adam_object | |
author | Peletier, L. A. |
author_facet | Peletier, L. A. |
author_role | aut |
author_sort | Peletier, L. A. |
author_variant | l a p la lap |
building | Verbundindex |
bvnumber | BV042419449 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184307853 (DE-599)BVBBV042419449 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0135-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03752nam a2200625zcb4500</leader><controlfield tag="001">BV042419449</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461201359</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0135-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817641108</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4110-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0135-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184307853</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419449</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peletier, L. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial Patterns</subfield><subfield code="b">Higher Order Models in Physics and Mechanics</subfield><subfield code="c">by L. A. Peletier, W. C. Troy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 343 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">45</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The study of spatial patterns in extended systems, and their evolution with time, poses challenging questions for physicists and mathematicians alike. Waves on water, pulses in optical fibers, periodic structures in alloys, folds in rock formations, and cloud patterns in the sky: patterns are omnipresent in the world around us. Their variety and complexity make them a rich area of study. In the study of these phenomena an important role is played by well-chosen model equations, which are often simpler than the full equations describing the physical or biological system, but still capture its essential features. Through a thorough analysis of these model equations one hopes to glean a better under standing of the underlying mechanisms that are responsible for the formation and evolution of complex patterns. Classical model equations have typically been second-order partial differential equations. As an example we mention the widely studied Fisher-Kolmogorov or Allen-Cahn equation, originally proposed in 1937 as a model for the interaction of dispersal and fitness in biological populations. As another example we mention the Burgers equation, proposed in 1939 to study the interaction of diffusion and nonlinear convection in an attempt to understand the phenomenon of turbulence. Both of these are nonlinear second-order diffusion equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physikalisches System</subfield><subfield code="0">(DE-588)4174610-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ordnung n</subfield><subfield code="0">(DE-588)4322729-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturbildung</subfield><subfield code="0">(DE-588)4541700-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physikalisches System</subfield><subfield code="0">(DE-588)4174610-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strukturbildung</subfield><subfield code="0">(DE-588)4541700-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nichtlineare Differentialgleichung</subfield><subfield code="0">(DE-588)4205536-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Ordnung n</subfield><subfield code="0">(DE-588)4322729-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Troy, W. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0135-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854866</subfield></datafield></record></collection> |
id | DE-604.BV042419449 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:40Z |
institution | BVB |
isbn | 9781461201359 9780817641108 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854866 |
oclc_num | 1184307853 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 343 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spellingShingle | Peletier, L. A. Spatial Patterns Higher Order Models in Physics and Mechanics Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik Physikalisches System (DE-588)4174610-7 gnd Mathematisches Modell (DE-588)4114528-8 gnd Ordnung n (DE-588)4322729-6 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd Strukturbildung (DE-588)4541700-3 gnd |
subject_GND | (DE-588)4174610-7 (DE-588)4114528-8 (DE-588)4322729-6 (DE-588)4205536-2 (DE-588)4541700-3 |
title | Spatial Patterns Higher Order Models in Physics and Mechanics |
title_auth | Spatial Patterns Higher Order Models in Physics and Mechanics |
title_exact_search | Spatial Patterns Higher Order Models in Physics and Mechanics |
title_full | Spatial Patterns Higher Order Models in Physics and Mechanics by L. A. Peletier, W. C. Troy |
title_fullStr | Spatial Patterns Higher Order Models in Physics and Mechanics by L. A. Peletier, W. C. Troy |
title_full_unstemmed | Spatial Patterns Higher Order Models in Physics and Mechanics by L. A. Peletier, W. C. Troy |
title_short | Spatial Patterns |
title_sort | spatial patterns higher order models in physics and mechanics |
title_sub | Higher Order Models in Physics and Mechanics |
topic | Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik Physikalisches System (DE-588)4174610-7 gnd Mathematisches Modell (DE-588)4114528-8 gnd Ordnung n (DE-588)4322729-6 gnd Nichtlineare Differentialgleichung (DE-588)4205536-2 gnd Strukturbildung (DE-588)4541700-3 gnd |
topic_facet | Mathematics Differential Equations Differential equations, partial Ordinary Differential Equations Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik Physikalisches System Mathematisches Modell Ordnung n Nichtlineare Differentialgleichung Strukturbildung |
url | https://doi.org/10.1007/978-1-4612-0135-9 |
work_keys_str_mv | AT peletierla spatialpatternshigherordermodelsinphysicsandmechanics AT troywc spatialpatternshigherordermodelsinphysicsandmechanics |