P-adic Deterministic and Random Dynamics:
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
2004
|
Series: | Mathematics and Its Applications
574 |
Subjects: | |
Links: | https://doi.org/10.1007/978-1-4020-2660-7 |
Item Description: | ?eldK(and,forexample,p-adicsuperspaces). LateronI.V.Volovichproposed the ?rst model ofp-adic string, see Chapter 1. We also remark that the non-Archimedean theory of dynamical systems is a very natural ?eld for applications of non-Archimedean analysis—analysis for mapsf : K? K, see Chapter 1. In 1997, see [101], A. Yu. Khrennikov proposed to applyp-adic dynamical systemsformodelingofcognitiveprocesses. Inapplicationsofp-adicnumbers to cognitive science the crucial role is played not by the algebraic structure of Q , but by its tree-like hierarchical structure. This structure of a p-adic tree p is used for a hierarchical coding of mental information and the parameter p characterizesthecodingsystemofacognitivesystem. Therefore,insuchp-adic cognitive models the assumption thatp is a prime number is not so natural. We can apply dynamical systems in rings ofp-adic numbersQ , wherep> 1 is an p arbitrarynaturalnumber. Foundationsofp-adiccognitivemodelsarepresented in detail in the book [111], see also Chapter 8, Chapter 11, and Chapter 12 for new developments of this theory. ThisbookismainlybasedontheresultsofinvestigationsoftheVaxj ¨ og ¨ roupin p-adic dynamical systems: Professor Andrei Yu. Khrennikov and the graduate students Karl-Olof Lindahl, Marcus Nilsson, Robert Nyqvist, and Per-Anders Svensson. One of the main streams in the research of the V¨ axj¨ o group was induced by an observation, see [101], that in the theory ofp-adic dynamical systems there appearsa new important parameter - the prime numberp giving the basis of the corresponding number ?eld Q . Therefore it may be interesting to investigate p dependence of some characteristics of a dynamical system on p, especially whenp?? |
Physical Description: | 1 Online-Ressource (XVIII, 270 p) |
ISBN: | 9781402026607 9789048166985 |
DOI: | 10.1007/978-1-4020-2660-7 |
Staff View
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419245 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 xx o|||| 00||| eng d | ||
020 | |a 9781402026607 |c Online |9 978-1-4020-2660-7 | ||
020 | |a 9789048166985 |c Print |9 978-90-481-6698-5 | ||
024 | 7 | |a 10.1007/978-1-4020-2660-7 |2 doi | |
035 | |a (OCoLC)879622840 | ||
035 | |a (DE-599)BVBBV042419245 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.3 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Khrennikov, Andrei Yu |e Verfasser |4 aut | |
245 | 1 | 0 | |a P-adic Deterministic and Random Dynamics |c by Andrei Yu. Khrennikov, Marcus Nilson |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (XVIII, 270 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 574 | |
500 | |a ?eldK(and,forexample,p-adicsuperspaces). LateronI.V.Volovichproposed the ?rst model ofp-adic string, see Chapter 1. We also remark that the non-Archimedean theory of dynamical systems is a very natural ?eld for applications of non-Archimedean analysis—analysis for mapsf : K? K, see Chapter 1. In 1997, see [101], A. Yu. Khrennikov proposed to applyp-adic dynamical systemsformodelingofcognitiveprocesses. Inapplicationsofp-adicnumbers to cognitive science the crucial role is played not by the algebraic structure of Q , but by its tree-like hierarchical structure. This structure of a p-adic tree p is used for a hierarchical coding of mental information and the parameter p characterizesthecodingsystemofacognitivesystem. Therefore,insuchp-adic cognitive models the assumption thatp is a prime number is not so natural. We can apply dynamical systems in rings ofp-adic numbersQ , wherep> 1 is an p arbitrarynaturalnumber. Foundationsofp-adiccognitivemodelsarepresented in detail in the book [111], see also Chapter 8, Chapter 11, and Chapter 12 for new developments of this theory. ThisbookismainlybasedontheresultsofinvestigationsoftheVaxj ¨ og ¨ roupin p-adic dynamical systems: Professor Andrei Yu. Khrennikov and the graduate students Karl-Olof Lindahl, Marcus Nilsson, Robert Nyqvist, and Per-Anders Svensson. One of the main streams in the research of the V¨ axj¨ o group was induced by an observation, see [101], that in the theory ofp-adic dynamical systems there appearsa new important parameter - the prime numberp giving the basis of the corresponding number ?eld Q . Therefore it may be interesting to investigate p dependence of some characteristics of a dynamical system on p, especially whenp?? | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Consciousness | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Cognitive Psychology | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a p-adische Analysis |0 (DE-588)4252360-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a p-adische Analysis |0 (DE-588)4252360-6 |D s |
689 | 0 | 1 | |a Differenzierbares dynamisches System |0 (DE-588)4137931-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Nilson, Marcus |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4020-2660-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027854662 |
Record in the Search Index
DE-BY-TUM_katkey | 2066254 |
---|---|
_version_ | 1821931179726602240 |
any_adam_object | |
author | Khrennikov, Andrei Yu |
author_facet | Khrennikov, Andrei Yu |
author_role | aut |
author_sort | Khrennikov, Andrei Yu |
author_variant | a y k ay ayk |
building | Verbundindex |
bvnumber | BV042419245 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879622840 (DE-599)BVBBV042419245 |
dewey-full | 512.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.3 |
dewey-search | 512.3 |
dewey-sort | 3512.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4020-2660-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03836nam a2200613zcb4500</leader><controlfield tag="001">BV042419245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402026607</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4020-2660-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048166985</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6698-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4020-2660-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622840</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khrennikov, Andrei Yu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">P-adic Deterministic and Random Dynamics</subfield><subfield code="c">by Andrei Yu. Khrennikov, Marcus Nilson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 270 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">574</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">?eldK(and,forexample,p-adicsuperspaces). LateronI.V.Volovichproposed the ?rst model ofp-adic string, see Chapter 1. We also remark that the non-Archimedean theory of dynamical systems is a very natural ?eld for applications of non-Archimedean analysis—analysis for mapsf : K? K, see Chapter 1. In 1997, see [101], A. Yu. Khrennikov proposed to applyp-adic dynamical systemsformodelingofcognitiveprocesses. Inapplicationsofp-adicnumbers to cognitive science the crucial role is played not by the algebraic structure of Q , but by its tree-like hierarchical structure. This structure of a p-adic tree p is used for a hierarchical coding of mental information and the parameter p characterizesthecodingsystemofacognitivesystem. Therefore,insuchp-adic cognitive models the assumption thatp is a prime number is not so natural. We can apply dynamical systems in rings ofp-adic numbersQ , wherep> 1 is an p arbitrarynaturalnumber. Foundationsofp-adiccognitivemodelsarepresented in detail in the book [111], see also Chapter 8, Chapter 11, and Chapter 12 for new developments of this theory. ThisbookismainlybasedontheresultsofinvestigationsoftheVaxj ¨ og ¨ roupin p-adic dynamical systems: Professor Andrei Yu. Khrennikov and the graduate students Karl-Olof Lindahl, Marcus Nilsson, Robert Nyqvist, and Per-Anders Svensson. One of the main streams in the research of the V¨ axj¨ o group was induced by an observation, see [101], that in the theory ofp-adic dynamical systems there appearsa new important parameter - the prime numberp giving the basis of the corresponding number ?eld Q . Therefore it may be interesting to investigate p dependence of some characteristics of a dynamical system on p, especially whenp??</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Consciousness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cognitive Psychology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">p-adische Analysis</subfield><subfield code="0">(DE-588)4252360-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">p-adische Analysis</subfield><subfield code="0">(DE-588)4252360-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differenzierbares dynamisches System</subfield><subfield code="0">(DE-588)4137931-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nilson, Marcus</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4020-2660-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854662</subfield></datafield></record></collection> |
id | DE-604.BV042419245 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:40Z |
institution | BVB |
isbn | 9781402026607 9789048166985 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854662 |
oclc_num | 879622840 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 270 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spellingShingle | Khrennikov, Andrei Yu P-adic Deterministic and Random Dynamics Mathematics Geometry, algebraic Field theory (Physics) Functional analysis Mathematical physics Consciousness Field Theory and Polynomials Mathematical Methods in Physics Cognitive Psychology Functional Analysis Algebraic Geometry Mathematik Mathematische Physik Differenzierbares dynamisches System (DE-588)4137931-7 gnd p-adische Analysis (DE-588)4252360-6 gnd |
subject_GND | (DE-588)4137931-7 (DE-588)4252360-6 |
title | P-adic Deterministic and Random Dynamics |
title_auth | P-adic Deterministic and Random Dynamics |
title_exact_search | P-adic Deterministic and Random Dynamics |
title_full | P-adic Deterministic and Random Dynamics by Andrei Yu. Khrennikov, Marcus Nilson |
title_fullStr | P-adic Deterministic and Random Dynamics by Andrei Yu. Khrennikov, Marcus Nilson |
title_full_unstemmed | P-adic Deterministic and Random Dynamics by Andrei Yu. Khrennikov, Marcus Nilson |
title_short | P-adic Deterministic and Random Dynamics |
title_sort | p adic deterministic and random dynamics |
topic | Mathematics Geometry, algebraic Field theory (Physics) Functional analysis Mathematical physics Consciousness Field Theory and Polynomials Mathematical Methods in Physics Cognitive Psychology Functional Analysis Algebraic Geometry Mathematik Mathematische Physik Differenzierbares dynamisches System (DE-588)4137931-7 gnd p-adische Analysis (DE-588)4252360-6 gnd |
topic_facet | Mathematics Geometry, algebraic Field theory (Physics) Functional analysis Mathematical physics Consciousness Field Theory and Polynomials Mathematical Methods in Physics Cognitive Psychology Functional Analysis Algebraic Geometry Mathematik Mathematische Physik Differenzierbares dynamisches System p-adische Analysis |
url | https://doi.org/10.1007/978-1-4020-2660-7 |
work_keys_str_mv | AT khrennikovandreiyu padicdeterministicandrandomdynamics AT nilsonmarcus padicdeterministicandrandomdynamics |