Loop Spaces, Characteristic Classes and Geometric Quantization:
Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1993
|
Schriftenreihe: | Progress in Mathematics
|
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-0-8176-4731-5 https://doi.org/10.1007/978-0-8176-4731-5 |
Beschreibung: | This book deals with the differential geometry of manifolds, loop spaces, line bundles and groupoids and the relations of this geometry to the mathematical physics. Various developments in mathematical physics (e. g. in knot theory, gauge theory and topological quantum field theory) have led mathematicians and physicists to search for new geometric structures on manifolds and to seek a synthesis of ideas from geometry, topology and category theory. |
Umfang: | 1 Online-Ressource (XVI, 302 p) |
ISBN: | 9780817647315 9780817647308 |
DOI: | 10.1007/978-0-8176-4731-5 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419153 | ||
003 | DE-604 | ||
005 | 20210901 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 xx o|||| 00||| eng d | ||
020 | |a 9780817647315 |c Online |9 978-0-8176-4731-5 | ||
020 | |a 9780817647308 |c Print |9 978-0-8176-4730-8 | ||
024 | 7 | |a 10.1007/978-0-8176-4731-5 |2 doi | |
035 | |a (OCoLC)1184485932 | ||
035 | |a (DE-599)BVBBV042419153 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-29 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Brylinski, Jean-Luc |e Verfasser |4 aut | |
245 | 1 | 0 | |a Loop Spaces, Characteristic Classes and Geometric Quantization |c by Jean-Luc Brylinski |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1993 | |
300 | |a 1 Online-Ressource (XVI, 302 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics | |
500 | |a This book deals with the differential geometry of manifolds, loop spaces, line bundles and groupoids and the relations of this geometry to the mathematical physics. Various developments in mathematical physics (e. g. in knot theory, gauge theory and topological quantum field theory) have led mathematicians and physicists to search for new geometric structures on manifolds and to seek a synthesis of ideas from geometry, topology and category theory. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Topology | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schleifenraum |0 (DE-588)4179711-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kohomologie |0 (DE-588)4031700-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geradenbündel |0 (DE-588)4156783-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Garbe |g Mathematik |0 (DE-588)4019261-1 |D s |
689 | 0 | 1 | |a Charakteristische Klasse |0 (DE-588)4194231-0 |D s |
689 | 0 | 2 | |a Kohomologie |0 (DE-588)4031700-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geradenbündel |0 (DE-588)4156783-3 |D s |
689 | 1 | 1 | |a Schleifenraum |0 (DE-588)4179711-5 |D s |
689 | 1 | 2 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-8176-4731-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027854570 | |
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l DE-29 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-8176-4731-5 |l DE-29 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2066163 |
---|---|
_version_ | 1821931177398763520 |
any_adam_object | |
author | Brylinski, Jean-Luc |
author_facet | Brylinski, Jean-Luc |
author_role | aut |
author_sort | Brylinski, Jean-Luc |
author_variant | j l b jlb |
building | Verbundindex |
bvnumber | BV042419153 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184485932 (DE-599)BVBBV042419153 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-8176-4731-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03051nam a2200673zc 4500</leader><controlfield tag="001">BV042419153</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210901 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647315</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-4731-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817647308</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4730-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-4731-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184485932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419153</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brylinski, Jean-Luc</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Loop Spaces, Characteristic Classes and Geometric Quantization</subfield><subfield code="c">by Jean-Luc Brylinski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 302 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the differential geometry of manifolds, loop spaces, line bundles and groupoids and the relations of this geometry to the mathematical physics. Various developments in mathematical physics (e. g. in knot theory, gauge theory and topological quantum field theory) have led mathematicians and physicists to search for new geometric structures on manifolds and to seek a synthesis of ideas from geometry, topology and category theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geradenbündel</subfield><subfield code="0">(DE-588)4156783-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Garbe</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4019261-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Charakteristische Klasse</subfield><subfield code="0">(DE-588)4194231-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kohomologie</subfield><subfield code="0">(DE-588)4031700-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geradenbündel</subfield><subfield code="0">(DE-588)4156783-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Schleifenraum</subfield><subfield code="0">(DE-588)4179711-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854570</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4731-5</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042419153 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T17:10:39Z |
institution | BVB |
isbn | 9780817647315 9780817647308 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854570 |
oclc_num | 1184485932 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-29 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-29 |
physical | 1 Online-Ressource (XVI, 302 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spellingShingle | Brylinski, Jean-Luc Loop Spaces, Characteristic Classes and Geometric Quantization Mathematics Algebra Global differential geometry Topology Differential Geometry Category Theory, Homological Algebra Mathematik Geometrische Quantisierung (DE-588)4156720-1 gnd Schleifenraum (DE-588)4179711-5 gnd Kohomologie (DE-588)4031700-6 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Geradenbündel (DE-588)4156783-3 gnd Garbe Mathematik (DE-588)4019261-1 gnd |
subject_GND | (DE-588)4156720-1 (DE-588)4179711-5 (DE-588)4031700-6 (DE-588)4194231-0 (DE-588)4156783-3 (DE-588)4019261-1 |
title | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_auth | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_exact_search | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_full | Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski |
title_fullStr | Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski |
title_full_unstemmed | Loop Spaces, Characteristic Classes and Geometric Quantization by Jean-Luc Brylinski |
title_short | Loop Spaces, Characteristic Classes and Geometric Quantization |
title_sort | loop spaces characteristic classes and geometric quantization |
topic | Mathematics Algebra Global differential geometry Topology Differential Geometry Category Theory, Homological Algebra Mathematik Geometrische Quantisierung (DE-588)4156720-1 gnd Schleifenraum (DE-588)4179711-5 gnd Kohomologie (DE-588)4031700-6 gnd Charakteristische Klasse (DE-588)4194231-0 gnd Geradenbündel (DE-588)4156783-3 gnd Garbe Mathematik (DE-588)4019261-1 gnd |
topic_facet | Mathematics Algebra Global differential geometry Topology Differential Geometry Category Theory, Homological Algebra Mathematik Geometrische Quantisierung Schleifenraum Kohomologie Charakteristische Klasse Geradenbündel Garbe Mathematik |
url | https://doi.org/10.1007/978-0-8176-4731-5 |
work_keys_str_mv | AT brylinskijeanluc loopspacescharacteristicclassesandgeometricquantization |