High frequency financial econometrics:
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Language: | English |
Published: |
Princeton, NJ [u.a.]
Princeton Univ. Press
2014
|
Subjects: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027535608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Physical Description: | XXIV, 659 S. graph. Darst. |
ISBN: | 9780691161433 0691161437 |
Staff View
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042094822 | ||
003 | DE-604 | ||
005 | 20150626 | ||
007 | t| | ||
008 | 140929s2014 xx d||| |||| 00||| eng d | ||
016 | 7 | |a 772356637 |2 DE-101 | |
020 | |a 9780691161433 |c hardback |9 978-0-691-16143-3 | ||
020 | |a 0691161437 |9 0-691-16143-7 | ||
035 | |a (OCoLC)881372950 | ||
035 | |a (DE-599)GBV772356637 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-M382 |a DE-188 |a DE-355 |a DE-91G |a DE-384 |a DE-N2 |a DE-20 | ||
082 | 0 | |a 332.015195 | |
084 | |a QH 330 |0 (DE-625)141569: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a SK 980 |0 (DE-625)143277: |2 rvk | ||
084 | |a WIR 160f |2 stub | ||
084 | |a WIR 176f |2 stub | ||
084 | |a WIR 017f |2 stub | ||
100 | 1 | |a Aït-Sahalia, Yacine |e Verfasser |0 (DE-588)128764465 |4 aut | |
245 | 1 | 0 | |a High frequency financial econometrics |c Yacine Aït-Sahalia & Jean Jacod |
246 | 1 | |a High-frequency financial econometrics | |
264 | 1 | |a Princeton, NJ [u.a.] |b Princeton Univ. Press |c 2014 | |
300 | |a XXIV, 659 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökonometrisches Modell |0 (DE-588)4043212-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finanzwirtschaft |0 (DE-588)4017214-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finanzwirtschaft |0 (DE-588)4017214-4 |D s |
689 | 0 | 1 | |a Ökonometrisches Modell |0 (DE-588)4043212-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Jacod, Jean |d 1944- |e Verfasser |0 (DE-588)140772421 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027535608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027535608 |
Record in the Search Index
DE-BY-TUM_call_number | 0048 WIR 160f 2015 A 3477 |
---|---|
DE-BY-TUM_katkey | 2115753 |
DE-BY-TUM_location | LSB |
DE-BY-TUM_media_number | 040008064077 |
_version_ | 1821935351397089281 |
adam_text | Contents
Preface
xvii
Notation xxiii
I Preliminary Material
1
1
From Diffusions to
S
emimartin
gales
3
1.1
Diffusions
.......................... 5
1.1.1
The Brownian Motion
............... 5
1.1.2
Stochastic Integrals
................ 8
1.1.3
A Central Example: Diffusion Processes
..... 12
1.2
Levy Processes
....................... 16
1.2.1
The Law of a Levy Process
............ 17
1.2.2
Examples
...................... 20
1.2.3
Poisson
Random Measures
............. 24
1.2.4
Integrals with Respect to
Poisson
Random Mea¬
sures
......................... 27
1.2.5
Path Properties and
Lévy-Itô
Decomposition
. . 30
1.3
Semimartingales
...................... 35
1.3.1
Definition and Stochastic Integrals
........ 35
1.3.2
Quadratic Variation
................ 38
1.3.3
Itô s
Formula
.................... 40
1.3.4
Characteristics of
a Semimartingale
and the
Lévy-
Itô
Decomposition
................. 43
1.4
Ito
Semimartingales
.................... 44
1.4.1
The Definition
................... 44
1.4.2
Extension of the Probability Space
........ 46
1.4.3
The Grigelionis Form of an
Ito Semimartingale .
47
vii
viii Contents
1.4.4
A Fundamental Example: Stochastic Differential
Equations Driven by a Levy Process
....... 49
1.5
Processes with Conditionally Independent Increments
. 52
1.5.1
Processes with Independent Increments
..... 53
1.5.2
A Class of Processes with J7-Conditionally Inde¬
pendent Increments
................ 54
2
Data Considerations
57
2.1
Mechanisms for Price Determination
........... 58
2.1.1
Limit Order and Other Market Mechanisms
... 59
2.1.2
Market Rules and Jumps in Prices
........ 61
2.1.3
Sample Data: Transactions, Quotes and NBBO
. 62
2.2
High-Frequency Data Distinctive Characteristics
.... 64
2.2.1
Random Sampling Times
............. 65
2.2.2
Market
Microstructure
Noise and Data Errors
. . 66
2.2.3
Non-normality
................... 67
2.3
Models for Market
Microstructure
Noise
......... 68
2.3.1
Additive Noise
................... 68
2.3.2
Rounding Errors
.................. 72
2.4
Strategies to Mitigate the Impact of Noise
........ 73
2.4.1
Downsampling
................... 73
2.4.2
Filtering Transactions Using Quotes
....... 74
II Asymptotic Concepts
79
3
Introduction to Asymptotic Theory: Volatility Estima¬
tion for a Continuous Process
83
3.1
Estimating Integrated Volatility in Simple Cases
.... 85
3.1.1
Constant Volatility
................. 85
3.1.2
Deterministic Time-Varying Volatility
...... 87
3-1.3
Stochastic Volatility Independent of the Driving
Brownian Motion
W
................ 88
3.1.4
From Independence to Dependence for the
Stochastic Volatility
................ 90
3.2
Stable Convergence in Law
................ 91
3.3
Convergence for Stochastic Processes
........... 96
3.4
General Stochastic Volatility
............... 99
3.5
What If the Process Jumps?
................ 106
Contents
їх
4 Vith
Jumps: An
Introduction
to
Power Variations
109
4.1
Power Variations
...................... 110
4.1.1
The Purely Discontinuous Case
..........
Ill
4.1.2
The Continuous Case
............... 112
4.1.3
The Mixed Case
.................. 113
4.2
Estimation in a Simple Parametric Example: Merton s
Model
............................ 116
4.2.1
Some Intuition for the Identification or Lack
Thereof: The Impact of High Frequency
..... 117
4.2.2
Asymptotic Efficiency in the Absence of Jumps
. 119
4.2.3
Asymptotic Efficiency in the Presence of Jumps
. 120
4.2.4
GMM Estimation
.................. 122
4.2.5
GMM Estimation of Volatility with Power Varia¬
tions
......................... 124
4.3
References
.......................... 130
5
High-Frequency Observations: Identifiability and
Asymptotic Efficiency
131
5.1
Classical Parametric Models
................ 132
5.1.1
Identifiability
.................... 133
5.1.2
Efficiency for Fully Identifiable Parametric Models
134
5.1.3
Efficiency for Partly Identifiable Parametric Mod¬
els
...... .................... 137
5.2
Identifiability for Levy Processes and the Blumenthal·-
Getoor Indices
........................ 139
5.2.1
About Mutual Singularity of Laws of Levy Pro¬
cesses
........................ 139
5.2.2
The BlumenthaLGetoor Indices and Related
Quantities for Levy Processes
........... 141
5.3
Discretely Observed Semimartingales: Identifiable Pa¬
rameters
.......................... 144
5.3.1
Identifiable Parameters: A Definition
....... 145
5.3.2
Identifiable Parameters: Examples
........ 148
5.4
Tests: Asymptotic Properties
............... 151
5.5
Back to the Levy Case: Disentangling the Diffusion Part
from Jumps
........................ 155
x
Contents
5.5.1
The Parametric Case
............... 155
5.5.2
The Semi-Parametric Case
............ 156
5.6
Blumenthal-Getoor Indices for Levy Processes: Efficiency
via Fisher s Information
.................. 160
5.7
References
.......................... 163
III Volatility
165
6
Estimating Integrated Volatility: The Base Case with.
No Noise and Equidistant Observations
169
6.1
When the Process Is Continuous
............. 171
6.1-1
Feasible Estimation and Confidence Bounds
. . . 173
6.1.2
The Multivariate Case
............... 176
6.1.3
About Estimation of the Quarticity
....... 177
6.2
When the Process Is Discontinuous
........... 179
6.2.1
Truncated Realized Volatility
........... 180
6.2.2
Choosing the Truncation Level: The One-
Dimensional Case
................. 187
6.2.3
Multipower Variations
............... 191
6.2.4
Truncated Bipower Variations
........... 194
6.2.5
Comparing Truncated Realized Volatility and
Multipower Variations
.............. 196
6.3
Other Methods
....................... 197
6.3.1
Range-Based Volatility Estimators
........ 197
6.3.2
Range-Based Estimators in a Genuine High-
Frequency Setting
................. 198
6.3.3
Nearest Neighbor Truncation
........... 199
6.3.4
Fourier-Based Estimators
............. 200
6.4
Finite Sample Refinements for Volatility Estimators
. . 202
6.5
References
.......................... 207
7
Volatility and
IVIicrostructiire
Noise
209
7.1
Models of Microstructure Noise
.............. 211
7.1.1
Additive White Noise
............... 211
7.1.2
Additive Colored Noise
.............. 212
7.1.3
Pure Rounding Noise
............... 213
7.1.4
A Mixed Case: Rounded White Noise
...... 215
7.1.5
Realized Volatility in the Presence of Noise
. . . 216
Contents xi
7.2
Assumptions on the Noise
................. 220
7.3
Maximum-Likelihood and Quasi Maximum-Likelihood
Estimation
......................... 224
7.3.1
A Toy Model: Gaussian Additive White Noise and
Browman Motion
................. 224
7.3.2
Robustness of the MLE to Stochastic Volatility
. 228
7.4
Quadratic Estimators
................... 231
7.5
Subsampling and Averaging: Two-
S
cales
Realized
Volatility
.......................... 232
7.6
The Pre-averaging Method
................ 238
7.6.1
Pre-
averaging and Optimality
........... 245
7.6.2
Adaptive Pre-averaging
.............. 247
7.7
Flat Top Realized Kernels
................. 250
7.8
Multi-scales Estimators
.................. 253
7.9
Estimation of the Quadratic Covariation
......... 254
7.10
References
.......................... 256
8
Estimating Spot Volatility
259
8.1
Local Estimation of the Spot Volatility
.......... 261
8.1.1
Some Heuristic Considerations
.......... 261
8.1.2
Consistent Estimation
............... 265
8.1.3
Central Limit Theorem
.............. 266
8.2
Global Methods for the Spot Volatility
.......... 273
8.3
Volatility of Volatility
................... 274
8.4
Leverage: The Covariation between X and
с
....... 279
8.5
Optimal Estimation of a Function of Volatility
..... 284
8.6
State-Dependent Volatility
................. 289
8.7
Spot Volatility and Microstructuxe Noise
......... 293
8.8
References
.......................... 296
9
Volatility and Irregularly Spaced Observations
299
9.1
Irregular Observation Times: The One-Dimensional Case
301
9.1.1
About Irregular Sampling Schemes
........ 302
9.1.2
Estimation of the Integrated Volatility and Other
Integrated Volatility Powers
............ 305
9.1.3
Irregular Observation Schemes: Time Changes
. 309
9.2
The Multivariate Case: Non-synchronous Observations
. 313
9.2.1
The Epps Effect
.................. 314
9.2.2
The Hayashi-Yoshida Method
........... 315
9.2.3
Other Methods and Extensions
.......... 320
хи
Contents
9.3
References
.......................... 323
IV Jumps
325
10
Testing for Jumps
329
10.1
Introduction
......................... 331
10.2
Relative Sizes of the Jump and Continuous Parts and
Testing for Jumps
..................... 334
10.2.1
The Mathematical Tools
.............. 334
10.2.2
A Linear Test for Jumps
............ 336
10.2.3
A Ratio Test for Jumps
............ 340
10.2.4
Relative Sizes of the Jump and Brownian Parts
. 342
10.2.5
Testing the Null
П^с)
instead of Q^w)
..... 352
10.3
A Symmetrical Test for Jumps
.............. 353
10.3.1
The Test Statistics Based on Power Variations
. 353
10.3.2
Some Central Limit Theorems
.......... 356
10.3.3
Testing the Null Hypothesis of No Jump
..... 360
10.3.4
Testing the Null Hypothesis of Presence of Jumps
362
10.3.5
Comparison of the Tests
.............. 366
10.4
Detection of Jumps
..................... 368
10.4.1
Mathematical Background
............. 369
10.4.2
A Test for Jumps
.................. 372
10.4.3
Finding the Jumps: The Finite Activity Case
. . 373
10.4.4
The General Case
................. 376
10.5
Detection of Volatility Jumps
............... 378
10.6
Microstructure
Noise and Jumps
............. 381
10.6.1
A Noise-Robust Jump Test Statistic
....... 382
10.6.2
The Central Limit Theorems for the Noise-Robust
Jump Test
...................... 384
10.6.3
Testing the Null Hypothesis of No Jump in the
Presence of Noise
................. 386
10.6.4
Testing the Null Hypothesis of Presence of Jumps
in the Presence of Noise
.............. 388
10.7
References
.......................... 390
11
Finer Analysis of Jumps: The Degree of Jump Activity
393
11.1
The Model Assumptions
.................. 395
11.2
Estimation of the First
B G
Index and of the Related
Intensity
........................... 399
Contents
xiii
11.2.1
Construction of the Estimators
.......... 399
11.2.2
Asymptotic Properties
............... 404
11.2.3
How Far from Asymptotic Optimality
? ..... 407
11.2.4
The Truly Non-symmetric Case
.......... 415
11.3
Successive
B G
Indices
................... 419
11.3
Л
Preliminaries
.................... 420
11.3.2
First Estimators
.................. 422
11.3.3
Improved Estimators
................ 424
11.4
References
.......................... 427
12
Finite or Infinite Activity for Jumps?
429
12.1
When the Null Hypothesis Is Finite Jump Activity
. . . 430
12.2
When the Null Hypothesis Is Infinite Jump Activity
. . 437
12.3
References
.......................... 439
13
Is Brownian IVlotion Really Necessary?
441
13.1
Tests for the Null Hypothesis That the Brownian Is
Present
........................... 443
13.2
Tests for the Null Hypothesis That the Brownian Is Absent
446
13.2.1
Adding a Fictitious Brownian
........... 448
13.2.2
Tests Based on Power Variations
......... 449
13.3
References
.......................... 451
14
Co-jumps
453
14.1
Co-jumps for the Underlying Process
. ......... 453
14.1.1
The Setting
..................... 453
14.1.2
Testing for Common Jumps
............ 456
14.1.3
Testing for Disjoint Jumps
............ 459
14.1.4
Some Open Problems
............... 463
14.2
Co-jumps between the Process and Its Volatility
.... 464
14.2.1
Limit Theorems for Functionals of Jumps and
Volatility
...................... 466
14.2.2
Testing the Null Hypothesis of No Cc-jump
. . . 469
14.2.3
Testing the Null Hypothesis of the Presence of
Co-jumps
...................... 473
14.3
References
.......................... 474
A Asymptotic Results for Power Variations
477
A.I Setting and Assumptions
................. 477
A.
2
Laws of Large Numbers
.................. 480
Contents
Α.
2.1
LLNs for Power Variations and Related Function-
als
..........................
480
A.
2.2
LLNs for the Integrated Volatility
........ 484
A.
2.3
LLNs for Estimating the Spot Volatility
..... 485
A.3 Central Limit Theorems
.................. 488
A.3.1 CLTs for the Processes B{f,An) and
£(ƒ,
Δη)
. 488
A.3.
2
A Degenerate Case
................. 490
A.
3.3
CLTs for the Processes B (f,
Δη)
and
Л (/,
Δη)
492
Α.
3.4
CLTs for the Quadratic Variation
......... 495
A.
4
Noise and
Ρ
re-aver aging: Limit Theorems
........ 496
A.
4.1
Assumptions on Noise and
Pre-
averaging Schemes
497
A.4.2 LLNs for Noise
................... 498
A.
4.3
CLTs for Noise
................... 500
A.
5
Localization and Strengthened Assumptions
....... 502
В
Miscellaneous Proofs
507
B.I Proofs for Chapter
5.................... 507
B.I.I Proofs for Sections
5.2
and
5.3.......... 507
B.I.
2
Proofs for Section
5.5 ............... 513
B.1.3 Proof of Theorem
5.25............... 520
B.2 Proofs for Chapter
8.................... 531
B.2.1 Preliminaries
.................... 531
B.2.
2
Estimates for the Increments of X and
с
..... 535
В.
2.3
Estimates for the Spot Volatility Estimators
. . . 538
B.2.
4
A Key Decomposition for Theorems
8.11
and
8.14 540
B.2.
5
Proof of Theorems
8.11
and
8.14
and Remark
8.15 547
B.2.
6
Proof of Theorems
8.12
and
8.17......... 553
B.2.
7
Proof of Theorem
8.20............... 554
B.3 Proofs for Chapter
10 ................... 557
B.3.1 Proof of Theorem
10.12.............. 557
B.3.
2
Proofs for Section
10.3............... 564
B.3.3 Proofs for Section
10.4............... 568
B.3.
4
Proofs for Section
10.5................ 573
B.4 Limit Theorems for the Jumps of an
Ito Semimartingale
578
B.5 A Comparison Between Jumps and Increments
..... 583
B.6 Proofs for Chapter
11 ................... 593
B.6.1 Proof of Theorems
11.11, 11.12, 11.18, 11.19,
and
Remark
11.14.................... 593
B.6.
2
Proof of Theorem
11.21.............. 597
B.6.3 Proof of Theorem
11.23.............. 600
Contents xv
В.
7
Proofs for Chapter
12 ................... 604
B.8 Proofs for Chapter
13 ................... 612
B.9 Proofs for Chapter
14................... 614
B.9.1 Proofs for Section
14.1............... 614
B.9.
2
Proofs for Section
14.2............... 619
Bibliography
633
Index
657
|
any_adam_object | 1 |
author | Aït-Sahalia, Yacine Jacod, Jean 1944- |
author_GND | (DE-588)128764465 (DE-588)140772421 |
author_facet | Aït-Sahalia, Yacine Jacod, Jean 1944- |
author_role | aut aut |
author_sort | Aït-Sahalia, Yacine |
author_variant | y a s yas j j jj |
building | Verbundindex |
bvnumber | BV042094822 |
classification_rvk | QH 330 SK 820 SK 850 SK 980 |
classification_tum | WIR 160f WIR 176f WIR 017f |
ctrlnum | (OCoLC)881372950 (DE-599)GBV772356637 |
dewey-full | 332.015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.015195 |
dewey-search | 332.015195 |
dewey-sort | 3332.015195 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02043nam a2200505 c 4500</leader><controlfield tag="001">BV042094822</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150626 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">140929s2014 xx d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">772356637</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691161433</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-691-16143-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691161437</subfield><subfield code="9">0-691-16143-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)881372950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV772356637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-M382</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.015195</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 330</subfield><subfield code="0">(DE-625)141569:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 980</subfield><subfield code="0">(DE-625)143277:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 160f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 176f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 017f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aït-Sahalia, Yacine</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128764465</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High frequency financial econometrics</subfield><subfield code="c">Yacine Aït-Sahalia & Jean Jacod</subfield></datafield><datafield tag="246" ind1="1" ind2=" "><subfield code="a">High-frequency financial econometrics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ [u.a.]</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIV, 659 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finanzwirtschaft</subfield><subfield code="0">(DE-588)4017214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finanzwirtschaft</subfield><subfield code="0">(DE-588)4017214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ökonometrisches Modell</subfield><subfield code="0">(DE-588)4043212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jacod, Jean</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140772421</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027535608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027535608</subfield></datafield></record></collection> |
id | DE-604.BV042094822 |
illustrated | Illustrated |
indexdate | 2024-12-20T17:02:09Z |
institution | BVB |
isbn | 9780691161433 0691161437 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027535608 |
oclc_num | 881372950 |
open_access_boolean | |
owner | DE-11 DE-M382 DE-188 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-384 DE-N2 DE-20 |
owner_facet | DE-11 DE-M382 DE-188 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-384 DE-N2 DE-20 |
physical | XXIV, 659 S. graph. Darst. |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton Univ. Press |
record_format | marc |
spellingShingle | Aït-Sahalia, Yacine Jacod, Jean 1944- High frequency financial econometrics Ökonometrie (DE-588)4132280-0 gnd Ökonometrisches Modell (DE-588)4043212-9 gnd Finanzwirtschaft (DE-588)4017214-4 gnd |
subject_GND | (DE-588)4132280-0 (DE-588)4043212-9 (DE-588)4017214-4 |
title | High frequency financial econometrics |
title_alt | High-frequency financial econometrics |
title_auth | High frequency financial econometrics |
title_exact_search | High frequency financial econometrics |
title_full | High frequency financial econometrics Yacine Aït-Sahalia & Jean Jacod |
title_fullStr | High frequency financial econometrics Yacine Aït-Sahalia & Jean Jacod |
title_full_unstemmed | High frequency financial econometrics Yacine Aït-Sahalia & Jean Jacod |
title_short | High frequency financial econometrics |
title_sort | high frequency financial econometrics |
topic | Ökonometrie (DE-588)4132280-0 gnd Ökonometrisches Modell (DE-588)4043212-9 gnd Finanzwirtschaft (DE-588)4017214-4 gnd |
topic_facet | Ökonometrie Ökonometrisches Modell Finanzwirtschaft |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027535608&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aitsahaliayacine highfrequencyfinancialeconometrics AT jacodjean highfrequencyfinancialeconometrics |
Table of Contents
Order paper/chapter scan
Order paper/chapter scan
Reference Collection (not available)
Call Number: |
0048 WIR 160f 2015 A 3477
Floor plan |
---|---|
Copy 1 | On permanent loan Ausgeliehen – Due: 31.12.9999 |