Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Subspace methods for pattern r...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Other Authors: Chen, Yen-Wei (Editor)
Format: Book
Language:English
Published: Heidelberg [u.a.] Springer 2014
Series:Studies in computational intelligence 552
Subjects:
Mustererkennung
Merkmalsextraktion
Dimensionsreduktion
Hochdimensionale Daten
Aufsatzsammlung
Links:http://deposit.dnb.de/cgi-bin/dokserv?id=4605418&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027427974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027427974&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:XVI, 198 S. Ill., graph. Darst. 24 cm
ISBN:9783642548505
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV041985621
003 DE-604
005 20140827
007 t|
008 140721s2014 gw ad|| |||| 00||| eng d
015 |a 14,N10  |2 dnb 
015 |a 14,A28  |2 dnb 
016 7 |a 1047985608  |2 DE-101 
020 |a 9783642548505  |c Pp. : ca. EUR 106.95 (DE, freier Pr.)  |9 978-3-642-54850-5 
024 3 |a 9783642548505 
028 5 2 |a Best.-Nr.: 12219568 
035 |a (OCoLC)871590065 
035 |a (DE-599)DNB1047985608 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE 
049 |a DE-739  |a DE-473 
082 0 |a 006.42  |2 22/ger 
084 |a ST 330  |0 (DE-625)143663:  |2 rvk 
084 |a 004  |2 sdnb 
245 1 0 |a Subspace methods for pattern recognition in intelligent environment  |c YenWei Chen ... eds. 
264 1 |a Heidelberg [u.a.]  |b Springer  |c 2014 
300 |a XVI, 198 S.  |b Ill., graph. Darst.  |c 24 cm 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Studies in computational intelligence  |v 552 
650 0 7 |a Mustererkennung  |0 (DE-588)4040936-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Merkmalsextraktion  |0 (DE-588)4314440-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Dimensionsreduktion  |0 (DE-588)4224279-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Hochdimensionale Daten  |0 (DE-588)7862975-5  |2 gnd  |9 rswk-swf 
655 7 |0 (DE-588)4143413-4  |a Aufsatzsammlung  |2 gnd-content 
689 0 0 |a Mustererkennung  |0 (DE-588)4040936-3  |D s 
689 0 1 |a Hochdimensionale Daten  |0 (DE-588)7862975-5  |D s 
689 0 2 |a Dimensionsreduktion  |0 (DE-588)4224279-4  |D s 
689 0 3 |a Merkmalsextraktion  |0 (DE-588)4314440-8  |D s 
689 0 |5 DE-604 
700 1 |a Chen, Yen-Wei  |4 edt 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-54851-2 
830 0 |a Studies in computational intelligence  |v 552  |w (DE-604)BV020822171  |9 552 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4605418&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027427974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027427974&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027427974 

Record in the Search Index

_version_ 1819331440236560384
adam_text CONTENTS 1 ACTIVE SHAPE MODEL AND ITS APPLICATION TO FACE ALIGNMENT 1 HUCHUAN LU, FAN YANG 1 INTRODUCTION 1 2 STATISTICAL SHAPE MODELS 3 2.1 POINT DISTRIBUTION MODEL 4 2.2 MODELING LOCAL STRUCTURE 11 2.3 MULTI-RESOLUTION ACTIVE SHAPE MODEL 13 3 IMAGE SEARCH USING ACTIVE SHAPE MODEL 15 3.1 INITIAL ESTIMATE 15 3.2 COMPUTE THE MOVEMENTS OF LANDMARKS 16 3.3 EXAMPLE OF SEARCH 19 3.4 APPLICATION AND PROBLEMS 19 4 IMPROVEMENTS ON CLASSICAL ACTIVE SHAPE MODEL 21 4.1 CONSTRAINT ON B 21 4.2 WIDTH OF SEARCH PROFILE 22 4.3 LANDMARKS GROUPING 22 4.4 DIRECTION OF SEARCH PROFILE 25 4.5 SKIN-COLOR MODEL 25 5 RELATED WORK 27 6 CONCLUSIONS 29 REFERENCES 29 2 CONDITION RELAXATION IN CONDITIONAL STATISTICAL SHAPE MODELS 33 ELCO OOST, SHO TOMOSHIGE, AKINOBU SHIMIZU 1 INTRODUCTION 33 2 CONDITIONAL STATISTICAL SHAPE MODELS 36 3 THE BENEFIT OF CONDITIONAL SSMS 37 4 RELIABILITY OF THE CONDITIONAL TERM 38 5 LEVEL SET BASED CONDITIONAL SSMS 39 6 RELAXATION OF THE CONDITIONAL TERM 39 HTTP://D-NB.INFO/1047985608 XIV CONTENTS 7 EMPLOYING THE SELECTION FORMULA FOR RELAXATION 41 8 AUTOMATIC ESTIMATION OF THE RELIABILITY OF THE CONDITIONAL FEATURES 44 9 PERFORMANCE COMPARISON OF VARIOUS CONDITIONAL SSMS 47 10 CONCLUSIONS 52 REFERENCES 53 3 INDEPENDENT COMPONENT ANALYSIS AND ITS APPLICATION TO CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES 57 XIANG-YAN ZENG, YEN-WEI CHEN 1 INTRODUCTION 57 2 BACKGROUND OF INDEPENDENT COMPONENT ANALYSIS 59 2.1 LINEAR TRANSFORMATION OF MULTIVARIATE DATA 59 2.2 BLIND SOURCE SEPARATION 60 2.3 INDEPENDENT COMPONENTS ANALYSIS 62 2.3.1 DATA MODEL 62 2.3.2 WHY ICA? 63 2.4 ICA ALGORITHMS 63 2.4.1 WHITENING THE DATA 63 2.4.2 ICA BY INFORMATION MAXIMIZATION 65 2.4.3 ICA BY MAXIMIZATION OF NON-GAUSSIANITY .. 67 3 ICA FOR REMOTE SENSING STUDY 70 3.1 ICA FOR HYPERSPECTRAL REMOTE SENSING 70 3.2 ICA FOR HIGH-RESOLUTION REMOTE SENSING 71 3.2.1 INDEPENDENT COMPONENTS OF RGB REMOTE SENSING IMAGES 71 3.3 CLASSIFICATION OF HIGH-RESOLUTION REMOTE SENSING IMAGES 75 3.3.1 PIXEL CLASSIFICATION BY SPECTRAL INFORMATION 75 3.3.2 CLASSIFICATION BY SPECTRAL INFORMATION AND SPATIAL CONSISTENCY 76 4 CONCLUSIONS 79 REFERENCES 79 4 SUBSPACE CONSTRUCTION FROM ARTIFICIALLY GENERATED IMAGES FOR TRAFFIC SIGN RECOGNITION 83 HIROYUKI ISHIDA, ICHIRO IDE, HIROSHI MURASE 1 INTRODUCTION TO THE GENERATIVE LEARNING 83 1.1 MODELING OF DEGRADATION CHARACTERISTICS 84 1.2 ESTIMATION OF DEGRADATION CHARACTERISTICS 84 2 GENERATIVE LEARNING FOR TRAFFIC SIGN RECOGNITION 86 2.1 GENERATION MODELS OF TRAFFIC SIGNS 86 2.2 TRAINING BY GENERATIVE LEARNING 88 2.2.1 PARAMETER ESTIMATION STEP 89 2.2.2 GENERATION OF TRAINING IMAGES 92 CONTENTS XV 3 RECOGNITION BY THE SUBSPACE METHOD 94 3.1 CONSTRUCTION OF A SUBSPACE 94 3.2 MULTIPLE FRAME INTEGRATION 95 3.3 CIRCULAR SIGN DETECTION 95 4 EXPERIMENT 96 4.1 RESULTS 99 4.2 DISCUSSION 100 5 SUMMARY 102 REFERENCES 102 5 LOCAL STRUCTURE PRESERVING BASED SUBSPACE ANALYSIS METHODS AND APPLICATIONS 105 JIAN CHENG, HANQING LU 1 INTRODUCTION 105 2 LOCAL STRUCTURE PRESERVING 107 3 LOCAL STRUCTURE PRESERVING FOR FACE RECOGNITION 107 3.1 SUPERVISED KERNEL LOCALITY PRESERVING PROJECTIONS 108 3.2 EXPERIMENTAL RESULTS ON FACE RECOGNITION 109 4 LOCAL STRUCTURE PRESERVING FOR IMAGE CLUSTERING ILL 4.1 PLSA WITH LOCAL STRUCTURE PRESERVING ILL 4.1.1 SPARSE NEIGHBORHOOD CONSISTENCY 112 4.1.2 LOCAL WORD CONSISTENCY 113 4.1.3 THE REGULARIZED MODEL 114 4.2 MODEL FITTING 114 4.3 EXPERIMENTAL RESULTS ON IMAGE CLUSTERING 116 5 CONCLUSIONS 119 REFERENCES 119 6 SPARSE REPRESENTATION FOR IMAGE SUPER-RESOLUTION 123 XIAN-HUA HAN, YEN-WEI CHEN 1 INTRODUCTION 123 2 SPARSE CODING 126 2.1 ORTHOGONAL MATCHING PURSUIT 127 2.2 K-SVD ALGORITHM 128 3 SPARSE CODING BASED SUPER-RESOLUTION 132 4 ANALYSIS OF THE REPRESENTED FEATURES FOR LOCAL IMAGE PATCHES... 136 5 HR2LR DICTIONARY PROPAGATION OF SC 140 6 EXPERIMENTS 144 7 CONCLUSIONS 146 REFERENCES 147 7 SAMPLING AND RECOVERY OF CONTINUOUSLY-DEFINED SPARSE SIGNALS AND ITS APPLICATIONS 151 AKIRA HIRABAYASHI 1 INTRODUCTION 151 2 SIGNALS WITH FINITE RATE OF INNOVATION AS AN EXTENSION OF BAND-LIMITED SIGNALS 153 XVI CONTENTS 3 SAMPLING AND RECOVERY OF THE SEQUENCE OF DIRACS 155 3.1 NOISELESS CASE 155 3.2 CADZOW DENOISING 158 3.3 MAXIMUM LIKELIHOOD ESTIMATION 159 4 SAMPLING AND RECOVERY OF SIGNALS OF PIECEWISE POLYNOMIALS.... 161 5 APPLICATION TO IMAGE FEATURE EXTRACTION 164 6 CONCLUSION 169 REFERENCES 169 8 TENSOR-BASED SUBSPACE LEARNING FOR MULTI-POSE FACE SYNTHESIS 171 XU QIAO, TAKANORI IGARASHI, YEN-WEI CHEN 1 INTRODUCTION 171 2 TENSOR AND MULTILINEAR ALGEBRA FOUNDATIONS 173 2.1 DEFINITIONS AND PRELIMINARIES 173 2.1.1 TENSOR DEFINITIONS 173 2.1.2 TENSOR NORM AND RANK 174 2.1.3 SYMMETRY AND DIAGONAL TENSORS 175 2.1.4 MATRICIZATION OF TENSORS 176 2.1.5 TENSOR MULTIPLICATION: THE N-MODE PRODUCT 176 2.1.6 MATRIX PRODUCT 177 2.2 TENSOR DECOMPOSITION 178 2.2.1 TUCKER DECOMPOSITION 178 2.2.2 CANDECOMP/PARAFAC DECOMPOSITION 180 2.2.3 OTHER DECOMPOSITIONS 180 3 TENSOR-BASED SUBSPACE LEARNING ALGORITHM 181 3.1 IMAGE REPRESENTATION 181 3.2 TENSOR SUBSPACE BUILDING 181 3.3 SYNTHESIS PROCEDURE 183 4 EXPERIMENTS AND RESULTS 185 4.1 DATA 185 4.2 IMAGE DEFORMATION 185 4.3 DATA COMPRESSION 185 4.4 SYNTHESIS RESULT AND EVALUATION 187 5 CONCLUSION 192 REFERENCES 192 9 EDITORS 197 10 AUTHOR INDEX 199 Subspace Methods for Pattern Recognition in Intelligent Environment Ulis research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidi} increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used tor dimension reduction and feature extraction in pattern recognition. They transform high dimensional data to a lower dimensional space (subspace), that focuses on the relevant information only. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include tace alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image svnlhesis.
any_adam_object 1
author2 Chen, Yen-Wei
author2_role edt
author2_variant y w c ywc
author_facet Chen, Yen-Wei
building Verbundindex
bvnumber BV041985621
classification_rvk ST 330
ctrlnum (OCoLC)871590065
(DE-599)DNB1047985608
dewey-full 006.42
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.42
dewey-search 006.42
dewey-sort 16.42
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02540nam a2200553 cb4500</leader><controlfield tag="001">BV041985621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140827 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">140721s2014 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,N10</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">14,A28</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1047985608</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642548505</subfield><subfield code="c">Pp. : ca. EUR 106.95 (DE, freier Pr.)</subfield><subfield code="9">978-3-642-54850-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642548505</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 12219568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)871590065</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1047985608</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.42</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subspace methods for pattern recognition in intelligent environment</subfield><subfield code="c">YenWei Chen ... eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 198 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">552</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimensionsreduktion</subfield><subfield code="0">(DE-588)4224279-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochdimensionale Daten</subfield><subfield code="0">(DE-588)7862975-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hochdimensionale Daten</subfield><subfield code="0">(DE-588)7862975-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dimensionsreduktion</subfield><subfield code="0">(DE-588)4224279-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Yen-Wei</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-54851-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">552</subfield><subfield code="w">(DE-604)BV020822171</subfield><subfield code="9">552</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4605418&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027427974&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027427974&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027427974</subfield></datafield></record></collection>
genre (DE-588)4143413-4 Aufsatzsammlung gnd-content
genre_facet Aufsatzsammlung
id DE-604.BV041985621
illustrated Illustrated
indexdate 2024-12-20T16:59:28Z
institution BVB
isbn 9783642548505
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027427974
oclc_num 871590065
open_access_boolean
owner DE-739
DE-473
DE-BY-UBG
owner_facet DE-739
DE-473
DE-BY-UBG
physical XVI, 198 S. Ill., graph. Darst. 24 cm
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Springer
record_format marc
series Studies in computational intelligence
series2 Studies in computational intelligence
spellingShingle Subspace methods for pattern recognition in intelligent environment
Studies in computational intelligence
Mustererkennung (DE-588)4040936-3 gnd
Merkmalsextraktion (DE-588)4314440-8 gnd
Dimensionsreduktion (DE-588)4224279-4 gnd
Hochdimensionale Daten (DE-588)7862975-5 gnd
subject_GND (DE-588)4040936-3
(DE-588)4314440-8
(DE-588)4224279-4
(DE-588)7862975-5
(DE-588)4143413-4
title Subspace methods for pattern recognition in intelligent environment
title_auth Subspace methods for pattern recognition in intelligent environment
title_exact_search Subspace methods for pattern recognition in intelligent environment
title_full Subspace methods for pattern recognition in intelligent environment YenWei Chen ... eds.
title_fullStr Subspace methods for pattern recognition in intelligent environment YenWei Chen ... eds.
title_full_unstemmed Subspace methods for pattern recognition in intelligent environment YenWei Chen ... eds.
title_short Subspace methods for pattern recognition in intelligent environment
title_sort subspace methods for pattern recognition in intelligent environment
topic Mustererkennung (DE-588)4040936-3 gnd
Merkmalsextraktion (DE-588)4314440-8 gnd
Dimensionsreduktion (DE-588)4224279-4 gnd
Hochdimensionale Daten (DE-588)7862975-5 gnd
topic_facet Mustererkennung
Merkmalsextraktion
Dimensionsreduktion
Hochdimensionale Daten
Aufsatzsammlung
url http://deposit.dnb.de/cgi-bin/dokserv?id=4605418&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027427974&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027427974&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV020822171
work_keys_str_mv AT chenyenwei subspacemethodsforpatternrecognitioninintelligentenvironment
  • Availability

‌

Order via interlibrary loan Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline