Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Hodge Decomposition - A Method...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Schwarz, Günter (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Berlin [u.a.] Springer 1995
Schriftenreihe:Lecture notes in mathematics 1607
Schlagwörter:
Randwertproblem
Hodge-Theorie
Zerlegung > Mathematik
Differentialform
Numerisches Verfahren
Links:https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
https://doi.org/10.1007/BFb0095978
Umfang:1 Online-Ressource
ISBN:9783540600169
DOI:10.1007/BFb0095978
Internformat

MARC

LEADER 00000nam a2200000zcb4500
001 BV041963642
003 DE-604
005 20181108
007 cr|uuu---uuuuu
008 140709s1995 xx o|||| 00||| eng d
020 |a 9783540600169  |c Online  |9 978-3-540-60016-9 
024 7 |a 10.1007/BFb0095978  |2 doi 
035 |a (OCoLC)838078046 
035 |a (DE-599)BVBBV041963642 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-12  |a DE-473  |a DE-703  |a DE-29  |a DE-19  |a DE-91  |a DE-739  |a DE-355  |a DE-Aug4  |a DE-860  |a DE-M347  |a DE-70  |a DE-210  |a DE-634  |a DE-859  |a DE-706  |a DE-1046  |a DE-526  |a DE-521  |a DE-384  |a DE-573  |a DE-523 
082 0 |a 515.96 
100 1 |a Schwarz, Günter  |e Verfasser  |4 aut 
245 1 0 |a Hodge Decomposition - A Method for Solving Boundary Value Problems  |c Günter Schwarz 
264 1 |a Berlin [u.a.]  |b Springer  |c 1995 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Lecture notes in mathematics  |v 1607 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Hodge-Theorie  |0 (DE-588)4135967-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Zerlegung  |g Mathematik  |0 (DE-588)4190746-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Differentialform  |0 (DE-588)4149772-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 0 1 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |5 DE-604 
689 1 0 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 1 1 |a Differentialform  |0 (DE-588)4149772-7  |D s 
689 1 2 |a Zerlegung  |g Mathematik  |0 (DE-588)4190746-2  |D s 
689 1 3 |a Hodge-Theorie  |0 (DE-588)4135967-7  |D s 
689 1 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-3-540-49403-4 
830 0 |a Lecture notes in mathematics  |v 1607  |w (DE-604)BV014303148  |9 1607 
856 4 0 |u https://doi.org/10.1007/BFb0095978  |x Verlag  |3 Volltext 
912 |a ZDB-1-SLN 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027406425 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-12  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-634  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-526  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-210  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-521  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-1046  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-Aug4  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-573  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-M347  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-859  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-860  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-523  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-70  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-91  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-384  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-473  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-19  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-355  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-703  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-706  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-29  |p ZDB-1-SLN  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/BFb0095978  |l DE-739  |p ZDB-1-SLN  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 2009886
DE-BY-UBR_katkey 5461036
_version_ 1835096024809472000
any_adam_object
author Schwarz, Günter
author_facet Schwarz, Günter
author_role aut
author_sort Schwarz, Günter
author_variant g s gs
building Verbundindex
bvnumber BV041963642
collection ZDB-1-SLN
ctrlnum (OCoLC)838078046
(DE-599)BVBBV041963642
dewey-full 515.96
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.96
dewey-search 515.96
dewey-sort 3515.96
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/BFb0095978
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03935nam a2200757zcb4500</leader><controlfield tag="001">BV041963642</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20181108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">140709s1995 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540600169</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-60016-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BFb0095978</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)838078046</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041963642</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-526</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.96</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwarz, Günter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hodge Decomposition - A Method for Solving Boundary Value Problems</subfield><subfield code="c">Günter Schwarz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1607</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zerlegung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4190746-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Zerlegung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4190746-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Hodge-Theorie</subfield><subfield code="0">(DE-588)4135967-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-540-49403-4</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1607</subfield><subfield code="w">(DE-604)BV014303148</subfield><subfield code="9">1607</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-SLN</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027406425</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-526</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-210</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-521</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-70</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/BFb0095978</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-1-SLN</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV041963642
illustrated Not Illustrated
indexdate 2024-12-20T16:58:53Z
institution BVB
isbn 9783540600169
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027406425
oclc_num 838078046
open_access_boolean
owner DE-12
DE-473
DE-BY-UBG
DE-703
DE-29
DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-739
DE-355
DE-BY-UBR
DE-Aug4
DE-860
DE-M347
DE-70
DE-210
DE-634
DE-859
DE-706
DE-1046
DE-526
DE-521
DE-384
DE-573
DE-523
owner_facet DE-12
DE-473
DE-BY-UBG
DE-703
DE-29
DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-739
DE-355
DE-BY-UBR
DE-Aug4
DE-860
DE-M347
DE-70
DE-210
DE-634
DE-859
DE-706
DE-1046
DE-526
DE-521
DE-384
DE-573
DE-523
physical 1 Online-Ressource
psigel ZDB-1-SLN
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Springer
record_format marc
series Lecture notes in mathematics
series2 Lecture notes in mathematics
spellingShingle Schwarz, Günter
Hodge Decomposition - A Method for Solving Boundary Value Problems
Lecture notes in mathematics
Randwertproblem (DE-588)4048395-2 gnd
Hodge-Theorie (DE-588)4135967-7 gnd
Zerlegung Mathematik (DE-588)4190746-2 gnd
Differentialform (DE-588)4149772-7 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
subject_GND (DE-588)4048395-2
(DE-588)4135967-7
(DE-588)4190746-2
(DE-588)4149772-7
(DE-588)4128130-5
title Hodge Decomposition - A Method for Solving Boundary Value Problems
title_auth Hodge Decomposition - A Method for Solving Boundary Value Problems
title_exact_search Hodge Decomposition - A Method for Solving Boundary Value Problems
title_full Hodge Decomposition - A Method for Solving Boundary Value Problems Günter Schwarz
title_fullStr Hodge Decomposition - A Method for Solving Boundary Value Problems Günter Schwarz
title_full_unstemmed Hodge Decomposition - A Method for Solving Boundary Value Problems Günter Schwarz
title_short Hodge Decomposition - A Method for Solving Boundary Value Problems
title_sort hodge decomposition a method for solving boundary value problems
topic Randwertproblem (DE-588)4048395-2 gnd
Hodge-Theorie (DE-588)4135967-7 gnd
Zerlegung Mathematik (DE-588)4190746-2 gnd
Differentialform (DE-588)4149772-7 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
topic_facet Randwertproblem
Hodge-Theorie
Zerlegung Mathematik
Differentialform
Numerisches Verfahren
url https://doi.org/10.1007/BFb0095978
volume_link (DE-604)BV014303148
work_keys_str_mv AT schwarzgunter hodgedecompositionamethodforsolvingboundaryvalueproblems
  • Verfügbarkeit
Bestellen (Login erforderlich)
Online lesen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt