Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Age-period-cohort analysis
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Buchumschlag
Age-period-cohort analysis: new models, methods, and empirical applications
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Yang, Yang 1975- (VerfasserIn), Land, Kenneth C. 1942- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Boca Raton CRC Press, Taylor & Francis Group [2013]
Schriftenreihe:Interdisciplinary statistics
Schlagwörter:
Cohort analysis
Age groups / Statistical methods
Altersgruppe
Kohortenanalyse
Links:https://doi.org/10.1201/b13902
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026927293&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026927293&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Umfang:xiii, 338 Seiten Diagramme
ISBN:9781466507524
DOI:10.1201/b13902
Internformat

MARC

LEADER 00000nam a2200000zc 4500
001 BV041481326
003 DE-604
005 20210715
007 t|
008 131216s2013 xx |||| |||| 00||| eng d
020 |a 9781466507524  |9 978-1-4665-0752-4 
035 |a (OCoLC)867173112 
035 |a (DE-599)BVBBV041481326 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-19  |a DE-473  |a DE-706  |a DE-384  |a DE-11  |a DE-703 
082 0 |a 001.422 
084 |a MR 2100  |0 (DE-625)123488:  |2 rvk 
084 |a QH 237  |0 (DE-625)141552:  |2 rvk 
084 |a QH 253  |0 (DE-625)141563:  |2 rvk 
100 1 |a Yang, Yang  |d 1975-  |e Verfasser  |0 (DE-588)1037989449  |4 aut 
245 1 0 |a Age-period-cohort analysis  |b new models, methods, and empirical applications  |c Yang Yang and Kenneth C. Land 
264 1 |a Boca Raton  |b CRC Press, Taylor & Francis Group  |c [2013] 
300 |a xiii, 338 Seiten  |b Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Interdisciplinary statistics 
505 8 |a Includes bibliographical references and index 
650 4 |a Cohort analysis 
650 4 |a Age groups / Statistical methods 
650 0 7 |a Altersgruppe  |0 (DE-588)4001469-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Kohortenanalyse  |0 (DE-588)4138256-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Altersgruppe  |0 (DE-588)4001469-1  |D s 
689 0 1 |a Kohortenanalyse  |0 (DE-588)4138256-0  |D s 
689 0 |5 DE-604 
700 1 |a Land, Kenneth C.  |d 1942-  |e Verfasser  |0 (DE-588)170135519  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |o 10.1201/b13902  |z 978-0-4290-9620-4 
856 4 1 |u https://doi.org/10.1201/b13902  |x Verlag  |z kostenfrei  |3 Volltext 
856 4 2 |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026927293&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Augsburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026927293&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
912 |a ebook 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026927293 

Datensatz im Suchindex

_version_ 1819290289457594368
adam_text Contents 1 Introduction.....................................................1 References.......................................................5 2 Why Cohort Analysis?.............................................7 2.1 Introduction................................................7 2.2 The Conceptualization of Cohort Effects.....................7 2.3 Distinguishing Age, Period, and Cohort......................9 2.4 Summary....................................................12 References......................................................13 3 APC Analysis of Data from Three Common Research Designs.........15 3.1 Introduction...............................................15 3.2 Repeated Cross-Sectional Data Designs......................15 3.3 Research Design I: Age-by֊Time Period Tabular Array of Rates/Proportions..........................................19 3.3.1 Understanding Cancer Incidence and Mortality Using APC Analysis: Biodemography, Social Disparities, and Forecasting........................19 3.3.2 Cancer Incidence Rates from Surveillance, Epidemiology, and End Results (SEER): 1973-2008.....21 3.3.3 Cancer Mortality Rates from the National Center for Health Statistics (NCHS): 1969-2007.................21 3.4 Research Design II: Repeated Cross-Sectional Sample Surveys... 26 3.4.1 General Social Survey (GSS) 1972-2006: Verbal Test Score and Subjective Well-Being.....................26 3.4.2 National Health and Nutrition Examination Surveys (NHANES) 1971-2008: The Obesity Epidemic............32 3.4.3 National Health Interview Surveys (NHIS) 1984-2007: Health Disparities.........................................34 3.4.4 Birth Cohort and Time Period Covariates Related to Cancer Trends.......................................37 3.5 Research Design III: Prospective Cohort Panels and the Accelerated Longitudinal Design............................39 3.5.1 Americans Changing Lives (ACL) Study 1986-2002: Depression, Physical Disability, and Self-Rated Health... 41 3.5.2 Health and Retirement Survey (HRS) 1992-2008: Frailty Index.......................................48 References......................................................50 4 Formalities of the Age-Period-Cohort Analysis Conundrum and a Generalized Linear Mixed Models (GLMM) Framework...............55 4.1 Introduction................................................55 4.2 Descriptive APC Analysis....................................56 4.3 Algebra of the APC Model Identification Problem.............61 4.4 Conventional Approaches to the APC Identification Problem..63 4.4.1 Reduced Two-Factor Models............................64 4.4.2 Constrained Generalized Linear Models (CGLIMs).......65 4.4.3 Nonlinear Parametric Transformation..................66 4.4.4 Proxy Variables......................................66 4.4.5 Other Approaches in Biostatistics....................67 4.5 Generalized Linear Mixed Models (GLMM) Framework............68 References.......................................................71 5 APC Accounting/Multiple Classification Model, Part I: Model Identification and Estimation Using the Intrinsic Estimator......75 5.1 Introduction................................................75 5.2 Algebraic, Geometric, and Verbal Definitions of the Intrinsic Estimator...................................................76 5.2.1 Algebraic Definition.................................77 5.2.2 Geometric Representation.............................80 5.2.3 Verbal Description...................................82 5.2.4 Computational Tools..................................83 5.3 Statistical Properties.................................... 84 5.3.1 Estimability, Unbiasedness, and Relative Efficiency..84 5.3.2 Asymptotic Properties................................86 5.3.3 Implications.........................................87 5.4 Model Validation: Empirical Example.........................89 5.5 Model Validation: Monte Carlo Simulation Analyses...........92 5.5.1 Results for APC Models: True Effects of A, P, and C All Present........................................ 94 5.5.1.1 Property of Estimable Constraints............98 5.5.2 Misuse of APC Models: Revisiting a Numerical Example.............................................104 5.6 Interpretation and Use of the Intrinsic Estimator..........109 Appendix 5.1: Proof of Unbiasedness of the IE as an Estimator of the b0 = Pprojb Constrained APC Coefficient Vector.........115 Appendix 5.2: Proof of Relative Efficiency of the IE as an Estimator of the b0 = Pprojb Constrained APC Coefficient Vector......116 Appendix 5.3: IE as a Minimum Norm Quadratic Unbiased Estimator of the b0 = Pprojb Constrained APC Coefficient Vector... 117 Appendix 5.4: Interpreting the Intrinsic Estimator, Its Relationship to Other Constrained Estimators in APC Accounting Models, and Limits on Its Empirical Applicability..........118 References.......................................................120 6 APC Accounting/Multiple Classification Model, Part II: Empirical Applications...........................................125 6.1 Introduction................................................125 6.2 Recent U.S. Cancer Incidence and Mortality Trends by Sex and Race: A Three-Step Procedure...........................125 6.2.1 Step 1: Descriptive Analysis Using Graphics........126 6.2.2 Step 2: Model Fit Comparisons......................146 6.2.3 Step 3: IE Analysis.................................152 6.2.3.1 All Cancer Sites Combined...................153 6.2.3.2 Age Effects by Site.........................156 6.2.3.3 Period Effects by Site......................161 6.2.3.4 Cohort Effects on Cancer Incidence..........165 6.2.3.5 Cohort Effects on Cancer Mortality..........166 6.2.4 Summary and Discussion of Findings..................167 6.3 APC Model-Based Demographic Projection and Forecasting.... 169 6.3.1 Two-Dimensional versus Three-Dimensional View ...... 170 6.3.2 Forecasting of the U.S. Cancer Mortality Trends for Leading Causes of Death.............................171 6.3.2.1 Methods of Extrapolation....................171 6.3.2.2 Prediction Intervals........................172 6.3.2.3 Internal Validation.........................173 6.3.2.4 Forecasting Results.........................181 Appendix 6.1: The Bootstrap Method Using a Residual Resampling Scheme for Prediction Intervals.................188 References.......................................................189 7 Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part I: The Basics...........191 7.1 Introduction................................................191 7.2 Beyond the Identification Problem...........................192 7.3 Basic Model Specification...................................195 7.4 Fixed versus Random Effects HAPC Specifications.............199 7.5 Interpretation of Model Estimates...........................205 7.6 Assessing the Significance of Random Period and Cohort Effects....................................................208 7.6.1 HAPC Linear Mixed Models............................209 7.6.1.1 Step 1: Study the Patterns and Statistical Significance of the Individual Estimated Coefficients for Time Periods and Birth Cohorts.....................................209 7.6.1.2 Step 2: Test for the Statistical Significance of the Period and Cohort Effects Taken as a Group.......................................212 7.6.2 HAPC Generalized Linear Mixed Models................215 7.7 Random Coefficients HAPC-CCREM..............................222 Appendix 7.1: Matrix Algebra Representations of Linear Mixed Models and Generalized Linear Mixed Models................227 References.....................................................229 8 Mixed Effects Models: Hierarchical APC-Cross-Classified Random Effects Models (HAPC-CCREM), Part II: Advanced Analyses....................................................231 8.1 Introduction..............................................231 8.2 Level 2 Covariates: Age and Temporal Changes in Social Inequalities in Happiness.................................231 8.3 HAPC-CCREM Analysis of Aggregate Rate Data on Cancer Incidence and Mortality...................................243 8.3.1 Trends in Age, Period, and Cohort Variations: Comparison with the IE Analysis.................. 243 8.3.2 Sex and Race Differentials.........................244 8.3.3 Cohort and Period Mechanisms: Cigarette Smoking, Obesity, Hormone Replacement Therapy, and Mammography...................................... 257 8.4 Full Bayesian Estimation..................................261 8.4.1 REML-EB Estimation.................................261 8.4.2 Gibbs Sampling and MCMC Estimation.................264 8.4.3 Discussion and Summary.............................268 8.5 HAPC-Variance Function Regression.........................269 8.5.1 Variance Function Regression: A Brief Overview....270 8.5.2 Research Topic: Changing Health Disparities........271 8.5.3 Intersecting the HAPC and VFR Models...............272 8.5.4 Results: Variations in Health and Health Disparities by Age, Period, and Cohort, 1984-2007..............275 8.5.5 Summary.......................................... 280 References.....................................................282 9 Mixed Effects Models: Hierarchical APC-Growth Curve Analysis of Prospective Cohort Data............................285 9.1 Introduction..............................................285 9.2 Intercohort Variations in Age Trajectories................287 9.2.1 Hypothesis.........................................287 9.2.2 Model Specification................................288 9.2.3 Results............................................291 9.3 Intracohort Heterogeneity in Age Trajectories.............294 9.3.1 Hypothesis.........................................294 9.3.2 Results........................................ 296 9.4 Intercohort Variations in Intracohort Heterogeneity Patterns ...300 9.4.1 Hypothesis.........................................300 9.4.2 Model Specification.............................. 301 9.4.3 Results............................................302 9.5 Summary.................................................307 References...................................................309 10 Directions for Future Research and Conclusion................313 10.1 Introduction............................................313 10.2 Additional Models.......................................315 10.2.1 The Smoothing Cohort Model and Nonparametric Methods..........................................315 10.2.2 The Continuously Evolving Cohort Effects Model...316 10.3 Longitudinal Cohort Analysis of Balanced Cohort Designs of Age Trajectories.....................................317 10.4 Conclusion..............................................319 References...................................................320 Index............................................................323 Age-Period-Cohort Analysis: New Models, Methods, and Empirical Applications is based on a decade of the authors’ collaborative work in age-period-cohort (APC) analysis. Within a single, consistent HAPC- GLMM statistical modeling framework, the authors synthesize APC models and methods for three research designs: age-by-time period tables of population rates or proportions, repeated cross-section sample surveys, and accelerated longitudinal panel studies. The authors show how the empirical application of the models to various problems leads to many fascinating findings on how outcome variables develop along the age, period, and cohort dimensions. The book makes two essential contributions to quantitative studies of time- related change. Through the introduction of the GLMM framework, it shows how innovative estimation methods and new model specifications can be used to tackle the “model identification problem” that has hampered the development and empirical application of APC analysis. The book also addresses the major criticism against APC analysis by explaining the use of new models within the GLMM framework to uncover mechanisms underlying age patterns and temporal trends. Encompassing both methodological expositions and empirical studies, this book explores the ways in which statistical models, methods, and research designs can be used to open new possibilities for APC analysis. It compares new and existing models and methods and provides useful guidelines on how to conduct APC analysis. For empirical illustrations, the text incorporates examples from a variety of disciplines, such as sociology, demography, and epidemiology. Along with details on empirical analyses, software and programs to estimate the models are available on the book’s web page.
any_adam_object 1
author Yang, Yang 1975-
Land, Kenneth C. 1942-
author_GND (DE-588)1037989449
(DE-588)170135519
author_facet Yang, Yang 1975-
Land, Kenneth C. 1942-
author_role aut
aut
author_sort Yang, Yang 1975-
author_variant y y yy
k c l kc kcl
building Verbundindex
bvnumber BV041481326
classification_rvk MR 2100
QH 237
QH 253
collection ebook
contents Includes bibliographical references and index
ctrlnum (OCoLC)867173112
(DE-599)BVBBV041481326
dewey-full 001.422
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 001 - Knowledge
dewey-raw 001.422
dewey-search 001.422
dewey-sort 11.422
dewey-tens 000 - Computer science, information, general works
discipline Allgemeines
Soziologie
Wirtschaftswissenschaften
doi_str_mv 10.1201/b13902
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02274nam a2200481zc 4500</leader><controlfield tag="001">BV041481326</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210715 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">131216s2013 xx |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781466507524</subfield><subfield code="9">978-1-4665-0752-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867173112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041481326</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.422</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MR 2100</subfield><subfield code="0">(DE-625)123488:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 253</subfield><subfield code="0">(DE-625)141563:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Yang</subfield><subfield code="d">1975-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1037989449</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Age-period-cohort analysis</subfield><subfield code="b">new models, methods, and empirical applications</subfield><subfield code="c">Yang Yang and Kenneth C. Land</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton</subfield><subfield code="b">CRC Press, Taylor &amp; Francis Group</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 338 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Interdisciplinary statistics</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cohort analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Age groups / Statistical methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Altersgruppe</subfield><subfield code="0">(DE-588)4001469-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kohortenanalyse</subfield><subfield code="0">(DE-588)4138256-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Altersgruppe</subfield><subfield code="0">(DE-588)4001469-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kohortenanalyse</subfield><subfield code="0">(DE-588)4138256-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Land, Kenneth C.</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170135519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.1201/b13902</subfield><subfield code="z">978-0-4290-9620-4</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1201/b13902</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026927293&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026927293&amp;sequence=000002&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026927293</subfield></datafield></record></collection>
id DE-604.BV041481326
illustrated Not Illustrated
indexdate 2024-12-20T16:48:24Z
institution BVB
isbn 9781466507524
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026927293
oclc_num 867173112
open_access_boolean 1
owner DE-19
DE-BY-UBM
DE-473
DE-BY-UBG
DE-706
DE-384
DE-11
DE-703
owner_facet DE-19
DE-BY-UBM
DE-473
DE-BY-UBG
DE-706
DE-384
DE-11
DE-703
physical xiii, 338 Seiten Diagramme
psigel ebook
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher CRC Press, Taylor & Francis Group
record_format marc
series2 Interdisciplinary statistics
spellingShingle Yang, Yang 1975-
Land, Kenneth C. 1942-
Age-period-cohort analysis new models, methods, and empirical applications
Includes bibliographical references and index
Cohort analysis
Age groups / Statistical methods
Altersgruppe (DE-588)4001469-1 gnd
Kohortenanalyse (DE-588)4138256-0 gnd
subject_GND (DE-588)4001469-1
(DE-588)4138256-0
title Age-period-cohort analysis new models, methods, and empirical applications
title_auth Age-period-cohort analysis new models, methods, and empirical applications
title_exact_search Age-period-cohort analysis new models, methods, and empirical applications
title_full Age-period-cohort analysis new models, methods, and empirical applications Yang Yang and Kenneth C. Land
title_fullStr Age-period-cohort analysis new models, methods, and empirical applications Yang Yang and Kenneth C. Land
title_full_unstemmed Age-period-cohort analysis new models, methods, and empirical applications Yang Yang and Kenneth C. Land
title_short Age-period-cohort analysis
title_sort age period cohort analysis new models methods and empirical applications
title_sub new models, methods, and empirical applications
topic Cohort analysis
Age groups / Statistical methods
Altersgruppe (DE-588)4001469-1 gnd
Kohortenanalyse (DE-588)4138256-0 gnd
topic_facet Cohort analysis
Age groups / Statistical methods
Altersgruppe
Kohortenanalyse
url https://doi.org/10.1201/b13902
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026927293&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026927293&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT yangyang ageperiodcohortanalysisnewmodelsmethodsandempiricalapplications
AT landkennethc ageperiodcohortanalysisnewmodelsmethodsandempiricalapplications
  • Verfügbarkeit

‌

Per Fernleihe bestellen Online lesen (frei zugänglich)
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt