Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Markov's theorem and 100 years...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Aigner, Martin 1942-2023 (VerfasserIn)
Format: Elektronisch E-Book
Sprache:Englisch
Veröffentlicht: Cham [u.a.] Springer 2013
Schlagwörter:
Markov, Andrej A. > 1856-1922
Geschichte 1913-2013
Diophantische Gleichung
Links:https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
https://doi.org/10.1007/978-3-319-00888-2
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026245879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026245879&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Umfang:1 Online-Ressource
ISBN:9783319008875
9783319008882
DOI:10.1007/978-3-319-00888-2
Internformat

MARC

LEADER 00000nam a2200000zc 4500
001 BV041272296
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 130916s2013 xx o|||| 00||| eng d
015 |a 13,O08  |2 dnb 
016 7 |a 1037245466  |2 DE-101 
020 |a 9783319008875  |9 978-3-319-00887-5 
020 |a 9783319008882  |c Online  |9 978-3-319-00888-2 
024 7 |a 10.1007/978-3-319-00888-2  |2 doi 
024 3 |a 9783319008882 
035 |a (OCoLC)858012678 
035 |a (DE-599)DNB1037245466 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-634  |a DE-20  |a DE-703  |a DE-19  |a DE-91  |a DE-739  |a DE-384  |a DE-83 
082 0 |a 512.7 
084 |a 510  |2 sdnb 
084 |a MAT 000  |2 stub 
100 1 |a Aigner, Martin  |d 1942-2023  |e Verfasser  |0 (DE-588)13205387X  |4 aut 
245 1 0 |a Markov's theorem and 100 years of the uniqueness conjecture  |b a mathematical journey from irrational numbers to perfect matchings  |c Martin Aigner 
264 1 |a Cham [u.a.]  |b Springer  |c 2013 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
600 1 7 |a Markov, Andrej A.  |d 1856-1922  |0 (DE-588)118578014  |2 gnd  |9 rswk-swf 
648 7 |a Geschichte 1913-2013  |2 gnd  |9 rswk-swf 
650 0 7 |a Diophantische Gleichung  |0 (DE-588)4012386-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Markov, Andrej A.  |d 1856-1922  |0 (DE-588)118578014  |D p 
689 0 1 |a Diophantische Gleichung  |0 (DE-588)4012386-8  |D s 
689 0 2 |a Geschichte 1913-2013  |A z 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-319-00888-2  |x Verlag  |3 Volltext 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026245879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Springer Fremddatenuebernahme  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026245879&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Abstract 
912 |a ZDB-2-SMA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026245879 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-384  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-3-319-00888-2  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Datensatz im Suchindex

DE-BY-TUM_katkey 1955221
_version_ 1821935154989367296
adam_text MARKOV S THEOREM AND 100 YEARS OF THE UNIQUENESS CONJECTURE / AIGNER, MARTIN : 2013 TABLE OF CONTENTS / INHALTSVERZEICHNIS APPROXIMATION OF IRRATIONALNUMBERS MARKOV S THEOREM AND THE UNIQUENESS CONJECTURE THE MARKOV TREE THE COHN TREE THE MODULAR GROUP SL(2,Z) THE FREE GROUP F2 CHRISTOFFEL WORDS STURMIAN WORDS PROOF OF MARKOV S THEOREM THE UNIQUENESS CONJECTURE. DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT. MARKOV S THEOREM AND 100 YEARS OF THE UNIQUENESS CONJECTURE / AIGNER, MARTIN : 2013 ABSTRACT / INHALTSTEXT THIS BOOK TAKES THE READER ON A MATHEMATICAL JOURNEY, FROM A NUMBER-THEORETIC POINT OF VIEW, TO THE REALM OF MARKOV’S THEOREM AND THE UNIQUENESS CONJECTURE, GRADUALLY UNFOLDING MANY BEAUTIFUL CONNECTIONS UNTIL EVERYTHING FALLS INTO PLACE IN THE PROOF OF MARKOV’S THEOREM.WHAT MAKES THE MARKOV THEME SO ATTRACTIVE IS THAT IT APPEARS IN AN ASTOUNDING VARIETY OF DIFFERENT FIELDS, FROM NUMBER THEORY TO COMBINATORICS, FROM CLASSICAL GROUPS AND GEOMETRY TO THE WORLD OF GRAPHS AND WORDS. ON THE WAY, THERE ARE ALSO INTRODUCTORY FORAYS INTO SOME FASCINATING TOPICS THAT DO NOT BELONG TO THE STANDARD CURRICULUM, SUCH AS FAREY FRACTIONS, MODULAR AND FREE GROUPS, HYPERBOLIC PLANES, AND ALGEBRAIC WORDS. THE BOOK CLOSES WITH A DISCUSSION OF THE CURRENT STATE OF KNOWLEDGE ABOUT THE UNIQUENESS CONJECTURE, WHICH REMAINS AN OPEN CHALLENGE TO THIS DAY. ALL THE MATERIAL SHOULD BE ACCESSIBLE TO UPPER-LEVEL UNDERGRADUATES WITH SOME BACKGROUND IN NUMBER THEORY, AND ANYTHING BEYOND THIS LEVEL IS FULLY EXPLAINED IN THE TEXT. THIS IS NOT A MONOGRAPH IN THE USUAL SENSE CONCENTRATING ON A SPECIFIC TOPIC. INSTEAD, IT NARRATES IN FIVE PARTS – NUMBERS, TREES, GROUPS, WORDS, FINALE – THE STORY OF A DISCOVERY IN ONE FIELD AND ITS MANY MANIFESTATIONS IN OTHERS, AS A TRIBUTE TO A GREAT MATHEMATICAL ACHIEVEMENT AND AS AN INTELLECTUAL PLEASURE, CONTEMPLATING THE MARVELLOUS UNITY OF ALL MATHEMATICS DIESES SCHRIFTSTUECK WURDE MASCHINELL ERZEUGT.
any_adam_object 1
author Aigner, Martin 1942-2023
author_GND (DE-588)13205387X
author_facet Aigner, Martin 1942-2023
author_role aut
author_sort Aigner, Martin 1942-2023
author_variant m a ma
building Verbundindex
bvnumber BV041272296
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (OCoLC)858012678
(DE-599)DNB1037245466
dewey-full 512.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7
dewey-search 512.7
dewey-sort 3512.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-319-00888-2
era Geschichte 1913-2013 gnd
era_facet Geschichte 1913-2013
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02918nam a2200577zc 4500</leader><controlfield tag="001">BV041272296</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130916s2013 xx o|||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">13,O08</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1037245466</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319008875</subfield><subfield code="9">978-3-319-00887-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319008882</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-319-00888-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-319-00888-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783319008882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858012678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1037245466</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aigner, Martin</subfield><subfield code="d">1942-2023</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13205387X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Markov's theorem and 100 years of the uniqueness conjecture</subfield><subfield code="b">a mathematical journey from irrational numbers to perfect matchings</subfield><subfield code="c">Martin Aigner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Markov, Andrej A.</subfield><subfield code="d">1856-1922</subfield><subfield code="0">(DE-588)118578014</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1913-2013</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov, Andrej A.</subfield><subfield code="d">1856-1922</subfield><subfield code="0">(DE-588)118578014</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte 1913-2013</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026245879&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Springer Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026245879&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Abstract</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026245879</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-319-00888-2</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV041272296
illustrated Not Illustrated
indexdate 2024-12-20T16:34:43Z
institution BVB
isbn 9783319008875
9783319008882
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026245879
oclc_num 858012678
open_access_boolean
owner DE-634
DE-20
DE-703
DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-739
DE-384
DE-83
owner_facet DE-634
DE-20
DE-703
DE-19
DE-BY-UBM
DE-91
DE-BY-TUM
DE-739
DE-384
DE-83
physical 1 Online-Ressource
psigel ZDB-2-SMA
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Springer
record_format marc
spellingShingle Aigner, Martin 1942-2023
Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings
Markov, Andrej A. 1856-1922 (DE-588)118578014 gnd
Diophantische Gleichung (DE-588)4012386-8 gnd
subject_GND (DE-588)118578014
(DE-588)4012386-8
title Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings
title_auth Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings
title_exact_search Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings
title_full Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings Martin Aigner
title_fullStr Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings Martin Aigner
title_full_unstemmed Markov's theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings Martin Aigner
title_short Markov's theorem and 100 years of the uniqueness conjecture
title_sort markov s theorem and 100 years of the uniqueness conjecture a mathematical journey from irrational numbers to perfect matchings
title_sub a mathematical journey from irrational numbers to perfect matchings
topic Markov, Andrej A. 1856-1922 (DE-588)118578014 gnd
Diophantische Gleichung (DE-588)4012386-8 gnd
topic_facet Markov, Andrej A. 1856-1922
Diophantische Gleichung
url https://doi.org/10.1007/978-3-319-00888-2
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026245879&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026245879&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT aignermartin markovstheoremand100yearsoftheuniquenessconjectureamathematicaljourneyfromirrationalnumberstoperfectmatchings
  • Verfügbarkeit
Bestellen (Login erforderlich)
Online lesen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt