Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Ideals, varieties, and algorit...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Cox, David A. 1948- (VerfasserIn), Little, John B. 1956- (VerfasserIn), O'Shea, Donal 1952- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: New York, NY Springer 2012
Ausgabe:3. ed., corr. at 3. print.
Schriftenreihe:Undergraduate texts in mathematics
Schlagwörter:
Datenverarbeitung
Commutative algebra > Data processing
Geometry, Algebraic > Data processing
Algorithmische Geometrie
Computeralgebra
Algebraische Geometrie
Kommutative Algebra
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026083438&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026083438&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XV, 551 S. Ill., graph. Darst.
ISBN:9780387356501
9781441922571
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV041107155
003 DE-604
005 20140523
007 t|
008 130625s2012 xx ad|| |||| 00||| eng d
020 |a 9780387356501  |c hardback  |9 978-0-387-35650-1 
020 |a 9781441922571  |9 978-1-4419-2257-1 
035 |a (OCoLC)854742844 
035 |a (DE-599)BVBBV041107155 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-19  |a DE-706  |a DE-83  |a DE-898  |a DE-355 
050 0 |a QA564 
082 0 |a 510 
084 |a SK 240  |0 (DE-625)143226:  |2 rvk 
084 |a 13P10  |2 msc 
084 |a 68Q40  |2 msc 
084 |a MAT 130f  |2 stub 
084 |a MAT 535f  |2 stub 
084 |a MAT 140f  |2 stub 
084 |a 14Qxx  |2 msc 
100 1 |a Cox, David A.  |d 1948-  |e Verfasser  |0 (DE-588)137410832  |4 aut 
245 1 0 |a Ideals, varieties, and algorithms  |b an introduction to computational algebraic geometry and commutative algebra  |c David Cox ; John Little ; Donal O'Shea 
250 |a 3. ed., corr. at 3. print. 
264 1 |a New York, NY  |b Springer  |c 2012 
300 |a XV, 551 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Undergraduate texts in mathematics 
650 4 |a Datenverarbeitung 
650 4 |a Commutative algebra  |x Data processing 
650 4 |a Geometry, Algebraic  |x Data processing 
650 0 7 |a Algorithmische Geometrie  |0 (DE-588)4130267-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Computeralgebra  |0 (DE-588)4010449-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Datenverarbeitung  |0 (DE-588)4011152-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Kommutative Algebra  |0 (DE-588)4164821-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Kommutative Algebra  |0 (DE-588)4164821-3  |D s 
689 0 1 |a Datenverarbeitung  |0 (DE-588)4011152-0  |D s 
689 0 |5 DE-604 
689 1 0 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 1 1 |a Algorithmische Geometrie  |0 (DE-588)4130267-9  |D s 
689 1 |5 DE-604 
689 2 0 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 2 1 |a Computeralgebra  |0 (DE-588)4010449-7  |D s 
689 2 |8 1\p  |5 DE-604 
689 3 0 |a Kommutative Algebra  |0 (DE-588)4164821-3  |D s 
689 3 1 |a Computeralgebra  |0 (DE-588)4010449-7  |D s 
689 3 |8 2\p  |5 DE-604 
700 1 |a Little, John B.  |d 1956-  |e Verfasser  |0 (DE-588)137410859  |4 aut 
700 1 |a O'Shea, Donal  |d 1952-  |e Verfasser  |0 (DE-588)113289731  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-387-35651-8 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026083438&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026083438&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Klappentext 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-026083438 

Datensatz im Suchindex

DE-BY-OTHR_call_number F 03/SK 240 C877(3)
DE-BY-OTHR_katkey 5400887
DE-BY-OTHR_location 02
DE-BY-OTHR_media_number 067002804743
DE-BY-UBR_call_number 80/SK 240 C877 I1
DE-BY-UBR_katkey 5400887
DE-BY-UBR_location UB Lesesaal Mathematik
DE-BY-UBR_media_number 069039565651
_version_ 1835107804673736705
adam_text Contents Preface to the First Edition vii Preface to the Second Edition ix Preface to the Third Edition xi 1. Geometry, Algebra, and Algorithms 1 §1. Polynomials and Affine Space ................. 1 §2. Affine Varieties ....................... 5 §3. Parametrizations of Affine Varieties .............. 14 §4. Ideals .......................... 29 §5. Polynomials of One Variable ................. 38 2. Groebner Bases 49 § I. Introduction ........................ 49 §2. Orderings on the Monomials in k[xi ,..., xn] ........... 54 §3. A Division Algorithm in k[x ι, . ..,.*„]............. 61 §4. Monomial Ideals and Dickson s Lemma ............. 69 §5. The Hubert Basis Theorem and Groebner Bases .......... 75 §6. Properties of Groebner Bases ................. 82 §7. Buchberger s Algorithm ................... 88 §8. First Applications of Groebner Bases .............. 95 §9. (Optional) Improvements on Buchberger s Algorithm ....... 102 3. Elimination Theory 115 § 1. The Elimination and Extension Theorems ............ 115 §2. The Geometry of Elimination ................. 123 §3. Implicitization ....................... 128 §4. Singular Points and Envelopes ................. 137 §5. Unique Factorization and Resultants .............. 150 §6. Resultants and the Extension Theorem ............. 162 ХШ xiv Contents 4. The Algebra-Geometry Dictionary 169 § 1. Hubert s Nullstellensatz................... 169 §2. Radical Ideals and the Ideal-Variety Correspondence ........ 175 §3. Sums, Products, and Intersections of Ideals ............ 183 §4. Zari ski Closure and Quotients of Ideals ............. 193 §5. Irreducible Varieties and PrimeIdeals .............. 198 §6. Decomposition of a Variety into Irreducibles ........... 204 §7. (Optional) Primary Decomposition of Ideals ........... 210 §8. Summary ......................... 214 5. Polynomial and Rational Functions on a Variety 215 § L Polynomial Mappings .................... 215 §2. Quotients of Polynomial Rings ................ 221 §3. Algorithmic Computations in k[x , ... ,xn]/I .......... 230 §4. The Coordinate Ring of an Affine Variety ............ 239 §5. Rational Functions on a Variety ................ 248 §6. (Optional) Proof of the Closure Theorem ............ 258 6. Robotics and Automatic Geometric Theorem Proving 265 §1. Geometric Description of Robots ............... 265 §2. The Forward Kinematic Problem ................ 271 §3. The Inverse Kinematic Problem and Motion Planning ....... 279 §4. Automatic Geometric Theorem Proving ............. 291 §5. Wu s Method ....................... 307 7. Invariant Theory of Finite Groups 317 §1. Symmetric Polynomials ................... 317 §2. Finite Matrix Groups and Rings of Invariants ........... 327 §3. Generators for the Ring of Invariants .............. 336 §4. Relations Among Generators and the Geometry of Orbits ...... 345 8. Protective Algebraic Geometry 357 § L The Projective Plane .................... 357 §2. Projective Space and Projective Varieties ............ 368 §3. The Projective Algebra-Geometry Dictionary .......... 379 §4. The Projective Closure of an Affine Variety ........... 386 §5. Projective Elimination Theory ................. 393 §6. The Geometry of Quadric Hypersurfaces ............ 408 §7. Bezout s Theorem ..................... 422 9. The Dimension of a Variety 439 § . The Variety of a Monomial Ideal ................ 439 $2. The Complement of a Monomial Ideal ............. 443 Contents xv §3. The Hubert Function and the Dimension of a Variety ........ 456 §4. Elementary Properties of Dimension .............. 468 §5. Dimension and Algebraic Independence ............. 477 §6. Dimension and Nonsingularity ................ 484 §7. The Tangent Cone ..................... 495 Appendix A. Some Concepts from Algebra 509 §1. Fields and Rings ...................... 509 §2. Groups .......................... 510 §3. Determinants ....................... 511 Appendix B. Pseudocode 513 §1. Inputs. Outputs, Variables, and Constants ............ 513 §2. Assignment Statements ................... 514 §3. Looping Structures ..................... 514 §4. Branching Structures .................... 515 Appendix С Computer Algebra Systems 517 §1. AXIOM ......................... 517 §2. Maple .......................... 520 §3. Mathematica ........................ 522 §4. REDUCE ......................... 524 §5. Other Systems ....................... 528 Appendix D. Independent Projects 530 § 1. General Comments ..................... 530 §2. Suggested Projects ..................... 530 References 535 Index 541 Algebraic Geometry is the study of systems of polynomial equations in one or more variables, asking such questions as: Does the system have finitely many solutions, and if so how can one find them? And if there are infinitely many solutions, how can they be described and manip¬ ulated? The solutions of a system of polynomial equations form a geometric object called a variety; the corresponding algebraic object is an ideal. There is a close relationship between ideals and varieties which reveals the intimate link between algebra and geometry. Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory, The algorithms to answer questions such as those posed above are ön important part of olge* braic geometry. Although the algorithmic roots of algebraic geometry ore oli ¡í îs only in the last forty years that computational methods have regained their eorlier prominence. New algorithms, coupled with the power of fast computers, hove led to botti theoretical advances and interesting applications, for example in robotics and in geometric theorem proving. In addition to enhancing the text of the second edition, with over 200 pages reflecting changes to enhance clarity and correctness, this third edition of ¡kok, Vorieïies anáÁlgof ém includes: • A significantly updated section on Maple in Appendix С • Updated information on AXIOM, (oCoA, Mocaulay 2, Magma, Mathematica and SINGULAR • A shorter proof of the Extension Theorem presented in Section 6 of Chapter 3 From the 2nd Edition: Ί consider the book to be wonderful. ... The exposition is very clear, there are many helpful pictures, and there are a great many instructive exercises, some quite challenging ... offers the heart and soul of modern commutative and algebrák geometry, - fte Amricon fÁQíkmíkoJ Monthly
any_adam_object 1
author Cox, David A. 1948-
Little, John B. 1956-
O'Shea, Donal 1952-
author_GND (DE-588)137410832
(DE-588)137410859
(DE-588)113289731
author_facet Cox, David A. 1948-
Little, John B. 1956-
O'Shea, Donal 1952-
author_role aut
aut
aut
author_sort Cox, David A. 1948-
author_variant d a c da dac
j b l jb jbl
d o do
building Verbundindex
bvnumber BV041107155
callnumber-first Q - Science
callnumber-label QA564
callnumber-raw QA564
callnumber-search QA564
callnumber-sort QA 3564
callnumber-subject QA - Mathematics
classification_rvk SK 240
classification_tum MAT 130f
MAT 535f
MAT 140f
ctrlnum (OCoLC)854742844
(DE-599)BVBBV041107155
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
edition 3. ed., corr. at 3. print.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03294nam a2200721 c 4500</leader><controlfield tag="001">BV041107155</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140523 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130625s2012 xx ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387356501</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-387-35650-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441922571</subfield><subfield code="9">978-1-4419-2257-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)854742844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV041107155</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA564</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">13P10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68Q40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 130f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 535f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14Qxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cox, David A.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137410832</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ideals, varieties, and algorithms</subfield><subfield code="b">an introduction to computational algebraic geometry and commutative algebra</subfield><subfield code="c">David Cox ; John Little ; Donal O'Shea</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed., corr. at 3. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 551 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algorithmische Geometrie</subfield><subfield code="0">(DE-588)4130267-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Little, John B.</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137410859</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Shea, Donal</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113289731</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-35651-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026083438&amp;sequence=000003&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=026083438&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-026083438</subfield></datafield></record></collection>
id DE-604.BV041107155
illustrated Illustrated
indexdate 2024-12-20T16:30:57Z
institution BVB
isbn 9780387356501
9781441922571
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-026083438
oclc_num 854742844
open_access_boolean
owner DE-19
DE-BY-UBM
DE-706
DE-83
DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
owner_facet DE-19
DE-BY-UBM
DE-706
DE-83
DE-898
DE-BY-UBR
DE-355
DE-BY-UBR
physical XV, 551 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Springer
record_format marc
series2 Undergraduate texts in mathematics
spellingShingle Cox, David A. 1948-
Little, John B. 1956-
O'Shea, Donal 1952-
Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
Datenverarbeitung
Commutative algebra Data processing
Geometry, Algebraic Data processing
Algorithmische Geometrie (DE-588)4130267-9 gnd
Computeralgebra (DE-588)4010449-7 gnd
Datenverarbeitung (DE-588)4011152-0 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
Kommutative Algebra (DE-588)4164821-3 gnd
subject_GND (DE-588)4130267-9
(DE-588)4010449-7
(DE-588)4011152-0
(DE-588)4001161-6
(DE-588)4164821-3
title Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
title_auth Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
title_exact_search Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra
title_full Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David Cox ; John Little ; Donal O'Shea
title_fullStr Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David Cox ; John Little ; Donal O'Shea
title_full_unstemmed Ideals, varieties, and algorithms an introduction to computational algebraic geometry and commutative algebra David Cox ; John Little ; Donal O'Shea
title_short Ideals, varieties, and algorithms
title_sort ideals varieties and algorithms an introduction to computational algebraic geometry and commutative algebra
title_sub an introduction to computational algebraic geometry and commutative algebra
topic Datenverarbeitung
Commutative algebra Data processing
Geometry, Algebraic Data processing
Algorithmische Geometrie (DE-588)4130267-9 gnd
Computeralgebra (DE-588)4010449-7 gnd
Datenverarbeitung (DE-588)4011152-0 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
Kommutative Algebra (DE-588)4164821-3 gnd
topic_facet Datenverarbeitung
Commutative algebra Data processing
Geometry, Algebraic Data processing
Algorithmische Geometrie
Computeralgebra
Algebraische Geometrie
Kommutative Algebra
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026083438&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=026083438&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT coxdavida idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra
AT littlejohnb idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra
AT osheadonal idealsvarietiesandalgorithmsanintroductiontocomputationalalgebraicgeometryandcommutativealgebra
  • Verfügbarkeit

‌

Per Fernleihe bestellen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt