Advances in intelligent signal processing and data mining: theory and applications
<p>The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential M...
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | Englisch |
Veröffentlicht: |
Berlin [u.a.]
Springer
2013
|
Schriftenreihe: | Studies in computational intelligence
410 |
Schlagwörter: | |
Links: | https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 https://doi.org/10.1007/978-3-642-28696-4 |
Zusammenfassung: | <p>The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. </p><p> </p><p>The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.</p><p> </p> |
Beschreibung: | From the content: Introduction to Intelligent Signal Processing and Data Mining -- Monte Carlo-Based Bayesian Group Object Tracking and Causal Reasoning -- A Sequential Monte Carlo Method for Multi-Target Tracking with the Intensity Filter -- Sequential Monte Carlo Methods for Localisation inWireless Networks -- A Sequential Monte Carlo Approach for Brain Source Localization |
Umfang: | 1 Online-Ressource (XIV, 354 p. 143 illus) |
ISBN: | 9783642286964 |
DOI: | 10.1007/978-3-642-28696-4 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV040800215 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 130306s2013 xx o|||| 00||| eng d | ||
020 | |a 9783642286964 |c Online |9 978-3-642-28696-4 | ||
024 | 7 | |a 10.1007/978-3-642-28696-4 |2 doi | |
035 | |a (OCoLC)820467138 | ||
035 | |a (DE-599)BVBBV040800215 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-634 |a DE-573 |a DE-92 |a DE-Aug4 |a DE-859 |a DE-706 |a DE-863 | ||
082 | 0 | |a 620 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ZN 6040 |0 (DE-625)157496: |2 rvk | ||
245 | 1 | 0 | |a Advances in intelligent signal processing and data mining |b theory and applications |c Petia Georgieva ..., eds. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2013 | |
300 | |a 1 Online-Ressource (XIV, 354 p. 143 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Studies in computational intelligence |v 410 | |
500 | |a From the content: Introduction to Intelligent Signal Processing and Data Mining -- Monte Carlo-Based Bayesian Group Object Tracking and Causal Reasoning -- A Sequential Monte Carlo Method for Multi-Target Tracking with the Intensity Filter -- Sequential Monte Carlo Methods for Localisation inWireless Networks -- A Sequential Monte Carlo Approach for Brain Source Localization | ||
520 | |a <p>The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. </p><p> </p><p>The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.</p><p> </p> | ||
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Visualisierung |0 (DE-588)4188417-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Signalverarbeitung |0 (DE-588)4054947-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soft Computing |0 (DE-588)4455833-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cluster-Analyse |0 (DE-588)4070044-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Signalverarbeitung |0 (DE-588)4054947-1 |D s |
689 | 0 | 1 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | 2 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 3 | |a Visualisierung |0 (DE-588)4188417-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 1 | 1 | |a Soft Computing |0 (DE-588)4455833-8 |D s |
689 | 1 | 2 | |a Cluster-Analyse |0 (DE-588)4070044-6 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Georgieva, Petia |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-642-28695-7 |
830 | 0 | |a Studies in computational intelligence |v 410 |w (DE-604)BV020822171 |9 410 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-28696-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-ENG | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-025780406 | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-634 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-Aug4 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-573 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-92 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-898 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-859 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-863 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28696-4 |l DE-706 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818977326643281920 |
---|---|
any_adam_object | |
author2 | Georgieva, Petia |
author2_role | edt |
author2_variant | p g pg |
author_facet | Georgieva, Petia |
building | Verbundindex |
bvnumber | BV040800215 |
classification_rvk | ST 300 ZN 6040 |
collection | ZDB-2-ENG |
ctrlnum | (OCoLC)820467138 (DE-599)BVBBV040800215 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-3-642-28696-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04649nam a2200769zcb4500</leader><controlfield tag="001">BV040800215</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130306s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642286964</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-28696-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-28696-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820467138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040800215</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6040</subfield><subfield code="0">(DE-625)157496:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in intelligent signal processing and data mining</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Petia Georgieva ..., eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 354 p. 143 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">410</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From the content: Introduction to Intelligent Signal Processing and Data Mining -- Monte Carlo-Based Bayesian Group Object Tracking and Causal Reasoning -- A Sequential Monte Carlo Method for Multi-Target Tracking with the Intensity Filter -- Sequential Monte Carlo Methods for Localisation inWireless Networks -- A Sequential Monte Carlo Approach for Brain Source Localization</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p>The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. </p><p> </p><p>The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.</p><p> </p></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Signalverarbeitung</subfield><subfield code="0">(DE-588)4054947-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Visualisierung</subfield><subfield code="0">(DE-588)4188417-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Cluster-Analyse</subfield><subfield code="0">(DE-588)4070044-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Georgieva, Petia</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-642-28695-7</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">410</subfield><subfield code="w">(DE-604)BV020822171</subfield><subfield code="9">410</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025780406</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28696-4</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV040800215 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T16:25:58Z |
institution | BVB |
isbn | 9783642286964 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025780406 |
oclc_num | 820467138 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
owner_facet | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (XIV, 354 p. 143 illus) |
psigel | ZDB-2-ENG |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Studies in computational intelligence |
series2 | Studies in computational intelligence |
spelling | Advances in intelligent signal processing and data mining theory and applications Petia Georgieva ..., eds. Berlin [u.a.] Springer 2013 1 Online-Ressource (XIV, 354 p. 143 illus) txt rdacontent c rdamedia cr rdacarrier Studies in computational intelligence 410 From the content: Introduction to Intelligent Signal Processing and Data Mining -- Monte Carlo-Based Bayesian Group Object Tracking and Causal Reasoning -- A Sequential Monte Carlo Method for Multi-Target Tracking with the Intensity Filter -- Sequential Monte Carlo Methods for Localisation inWireless Networks -- A Sequential Monte Carlo Approach for Brain Source Localization <p>The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis. </p><p> </p><p>The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.</p><p> </p> Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Visualisierung (DE-588)4188417-6 gnd rswk-swf Signalverarbeitung (DE-588)4054947-1 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Soft Computing (DE-588)4455833-8 gnd rswk-swf Cluster-Analyse (DE-588)4070044-6 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Signalverarbeitung (DE-588)4054947-1 s Stochastisches Modell (DE-588)4057633-4 s Datenanalyse (DE-588)4123037-1 s Visualisierung (DE-588)4188417-6 s 2\p DE-604 Data Mining (DE-588)4428654-5 s Soft Computing (DE-588)4455833-8 s Cluster-Analyse (DE-588)4070044-6 s 3\p DE-604 Georgieva, Petia edt Erscheint auch als Druckausgabe 978-3-642-28695-7 Studies in computational intelligence 410 (DE-604)BV020822171 410 https://doi.org/10.1007/978-3-642-28696-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Advances in intelligent signal processing and data mining theory and applications Studies in computational intelligence Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Stochastisches Modell (DE-588)4057633-4 gnd Data Mining (DE-588)4428654-5 gnd Visualisierung (DE-588)4188417-6 gnd Signalverarbeitung (DE-588)4054947-1 gnd Datenanalyse (DE-588)4123037-1 gnd Soft Computing (DE-588)4455833-8 gnd Cluster-Analyse (DE-588)4070044-6 gnd |
subject_GND | (DE-588)4057633-4 (DE-588)4428654-5 (DE-588)4188417-6 (DE-588)4054947-1 (DE-588)4123037-1 (DE-588)4455833-8 (DE-588)4070044-6 (DE-588)4143413-4 |
title | Advances in intelligent signal processing and data mining theory and applications |
title_auth | Advances in intelligent signal processing and data mining theory and applications |
title_exact_search | Advances in intelligent signal processing and data mining theory and applications |
title_full | Advances in intelligent signal processing and data mining theory and applications Petia Georgieva ..., eds. |
title_fullStr | Advances in intelligent signal processing and data mining theory and applications Petia Georgieva ..., eds. |
title_full_unstemmed | Advances in intelligent signal processing and data mining theory and applications Petia Georgieva ..., eds. |
title_short | Advances in intelligent signal processing and data mining |
title_sort | advances in intelligent signal processing and data mining theory and applications |
title_sub | theory and applications |
topic | Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Stochastisches Modell (DE-588)4057633-4 gnd Data Mining (DE-588)4428654-5 gnd Visualisierung (DE-588)4188417-6 gnd Signalverarbeitung (DE-588)4054947-1 gnd Datenanalyse (DE-588)4123037-1 gnd Soft Computing (DE-588)4455833-8 gnd Cluster-Analyse (DE-588)4070044-6 gnd |
topic_facet | Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Stochastisches Modell Data Mining Visualisierung Signalverarbeitung Datenanalyse Soft Computing Cluster-Analyse Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-642-28696-4 |
volume_link | (DE-604)BV020822171 |
work_keys_str_mv | AT georgievapetia advancesinintelligentsignalprocessinganddataminingtheoryandapplications |