Gespeichert in:
Beteiligte Personen: | , , |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Boca Raton [u.a.]
CRC Press
2014
|
Schriftenreihe: | Chapman & Hall/CRC applied algorithms and data structures series
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025775845&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XVII, 362 S. 24 cm |
ISBN: | 9781439825648 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040795638 | ||
003 | DE-604 | ||
005 | 20140311 | ||
007 | t| | ||
008 | 130305s2014 xx |||| 00||| eng d | ||
020 | |a 9781439825648 |c hbk |9 978-1-4398-2564-8 | ||
035 | |a (OCoLC)859367586 | ||
035 | |a (DE-599)HBZHT017051379 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-703 |a DE-355 |a DE-91G |a DE-83 | ||
084 | |a ST 134 |0 (DE-625)143590: |2 rvk | ||
084 | |a DAT 530f |2 stub | ||
100 | 1 | |a Benoit, Anne |e Verfasser |0 (DE-588)1042919720 |4 aut | |
245 | 1 | 0 | |a A guide to algorithm design |b paradigms, methods, and complexity analysis |c Anne Benoit, Yves Robert and Frédéric Vivien |
264 | 1 | |a Boca Raton [u.a.] |b CRC Press |c 2014 | |
300 | |a XVII, 362 S. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC applied algorithms and data structures series | |
650 | 0 | 7 | |a Computer |0 (DE-588)4070083-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenstruktur |0 (DE-588)4011146-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Computer |0 (DE-588)4070083-5 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 1 | 1 | |a Datenstruktur |0 (DE-588)4011146-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Robert, Yves |d 1958- |e Verfasser |0 (DE-588)1042919046 |4 aut | |
700 | 1 | |a Vivien, Frédéric |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025775845&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-025775845 |
Datensatz im Suchindex
DE-BY-TUM_call_number | 0102 DAT 530f 2014 A 205 |
---|---|
DE-BY-TUM_katkey | 1967505 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040080393793 |
DE-BY-UBR_call_number | 14/ST 134 B473 |
DE-BY-UBR_katkey | 5259773 |
DE-BY-UBR_location | UB Allgemeiner Lesesaal |
DE-BY-UBR_media_number | 069039842420 |
_version_ | 1835085025556561920 |
adam_text |
Contents
Preface
xv
I Polynomial-
1
irne
algorithms: Exercises
1
1
Introduction to complexity
3
1.1
On the complexity to
computo
.r"
.
'Λ
1.1.1
Naive method
. 4
1.1.2
Binary method
. 4
1.1.
Λ
Factorization method
. 4
1.1.4
Knuth's tree method
.
Гі
1.1.
Γ)
Complexity results
.
(i
1.2
Asymptotic notations:
Ο. ο, Θ,
and
Ω
.
S
1."?
Exercises
. 8
Exorcise
1.1:
Longest
balancée}
section
. 8
Exorcise
1.2:
Find the star
. 9
Exorcist4
1.3:
Breaking boxes
. 9
Exercise
1.4:
Maximum of
η
integers
. 10
Exercise
1.5:
Maximum and minimum of
η
integers
. 10
Exercise4
1.6:
Maximum and second maximum of
η
integers
. 11
Exercise
1.7:
Merging two sorted sets
. 11
Exercise
1.8:
The toolbox
. 12
Exercise
1.9:
Sorting a small number of objects
. 12
1.4
Solutions to exercises
. 14
Solution to Exercise
1.1:
Longest balanced section
. 14
Solution to Exercise
1.2:
Find the star
. 15
Solution to Exercise
1.3:
Breaking boxes
. 16
Solution to Exercise
1.4:
Maximum of
η
integers
. 17
Solution to Exercise
1.5:
Maximum and minimum of
η
integers
20
Solution to Exercise
1.6:
Maximum and second maximum of
η
integers
. 23
Solution to Exercise
1.7:
Merging two sorted sets
. 25
Solution to Exercise
1.8:
The toolbox
. 26
Solution to Exercise
1.9:
Sorting a small number of objects
. 29
1.5
Bibliographical notes
. 31
VI
2
Divide-and-conquer
33
2.1
St
rassen
Ή
algorithm
. 33
2.2
Master theorem
. 36
2.3
Solving recurrences
. 37
2.3.1
Solving homogeneous recurrences
. 37
2.3.2
Solving nonhoniogeneous recurrences
. 38
2.3.3
Solving the recurrence for Strassen's algorithm
. 39
2.4
Exercises
. 39
Exorcise
2.1:
Product of two polynomials
. 39
Exercise
2.2:
Toeplitz matrices
. 40
Exorcise
2.3:
Maximum sum
. 40
Exercise
2.4:
Boolean matrices: The Four-Russians algorithm
41
Exorcise
2.5:
Matrix multiplication and inversion
. 42
2.5
Solutions to exorcises
. 42
Solution to Exercise
2.1:
Product of two polynomials
. 42
Solution to Exercise
2.2:
Toeplitz matrices
. 44
Solution to Exercise
2.3:
Maximum sum
. 45
Solution to Exercise
2.4:
Boolean matrices:
Tlu1
Four-Russians
algorithm
. 49
Solution to Exorcise
2.5:
Matrix multiplication and inversion
50
2.0
Bibliographical notes
. 51
3
Greedy algorithms
53
3.1
Motivating example:
Тік1
sports hall
. 53
3.2
Designing greedy algorithms
. 55
3.3
Graph coloring
. 56
3.3.1
On coloring bipartite graphs
. 56
3.3.2
Greedy algorithms to color general graphs
. 57
3.3.3
Coloring interval graphs
. 60
3.4
Theory of matroids
. 61
3.5
Exercises
. 64
Exercise
3.1:
Interval cover
. 64
Exercise
3.2:
Memory usage
. 64
Exercise
3.3:
Scheduling dependent tasks on several machines
65
Exercise
3.4:
Scheduling independent tasks with priorities
. . 66
Exercise
3.5:
Scheduling independent tasks with deadlines
. . 66
Exercise
3.6:
Edge matroids
. 67
Exercise
3.7:
Huffman code
. 67
3.6
Solutions to exercises
. 68
Solution to Exercise
3.1:
Interval cover
. 68
Solution to Exercise
3.2:
Memory usage
. 69
Solution to Exercise
3.3:
Scheduling dependent tasks on several
machines
. 71
Solution to Exercise
3.4:
Scheduling independent tasks with
priorities
. 72
Vil
Solution
to Exercise
3.5:
Scheduling independent tasks with
deadlines
. 73
Solution to Exercise
3.6:
Edge matroids
. 74
Solution to Exercise
3.7:
Huffman code
. 75
3.7
Bibliographical notes
. 79
4
Dynamic programming
81
4.1
The coin changing problem
. 81
4.2
The knapsack problem
. 84
4.3
Designing dynamic-programming algorithms
. 86
4.4
Exercises
. 87
Exercise
4.1:
Matrix chains
. 87
Exercise»
4.2:
Тік1
library
. 88
Exercise
4.3:
Polygon
triangulation
. 88
Exercise
4.4:
Sentare
of ones
. 89
Exercise*
4.5:
The wind band
. 89
Exercise
4.
fi: Ski
rental
. 89
Exercise
4.7:
Building set
. 90
4.5
Solutions to exercises
. 90
Solution to Exercise
4.1:
Matrix chains
. 90
Solution to Exercise
4.2:
The library
. 91
Solution to Exercise
4.3:
Polygon
triangulation
. 93
Solution to Exercise
4.4:
Square
oť
ones
. 90
Solution to Exercise
4.5:
The wind band
. 98
Solution to Exercise
4.6:
Ski rental
. 98
Solution to Exercise
4.7:
Building set
. 102
4.0
Bibliographical note's
. 103
5
Amortized analysis
105
5.1
Methods for amortized analysis
. 105
5.1.1
Running examples
. 1(35
5.1.2
Aggregate analysis
. 106
5.1.3
Accounting method
. 106
5.1.4
Potential method
. 107
5.2
Exercises
. 108
Exercise1
5.1:
Binary counter
. 108
Exercise
5.2:
Inserting and deleting
. 108
Exercise
5.3:
Stack
. 109
Exercise
5.4:
Deleting half the elements
. 109
■*·<->
Exercise
5.5:
Searching and inserting
. 109
Exercise1
5.6:
Splay trees
. 110
Exercise?
5.7:
Half perimeter of a polygon
. 112
5.3
Solutions to exercises
. 112
Solution to Exercise
5.1:
Binary counter
. 112
Solution to Exercise
5.2:
Inserting and deleting
. 113
Vlil
Solution to Exercise
Γ).'Λ:
Stack
. 11-4
Solution to Exercise
5.4:
Deleting half
t
lit1 elements
. 11
Γ»
Sohlt
іон
to Exercise
5.5:
Searching and inserting
.
lib'
Solution to Exercise1 5.(i: Splay trees
. 117
Solution to Exercise
5.7:
Halí
perimeter of a polygon
. 119
5.4
Bibliographical notes
. 122
II NP-completeiiess and beyond
123
6
NP-completeness
125
(i.l A practical approach to complexity theory
. 125
(І.2
Problem classes
.
12(i
0.2.1
Problems in
Ρ
. 127
(і.
2.2
Problems in
XP
.
12í)
(і.
3
NP-complete problems and reduction theory
. 132
(i.3.1 Polynomial reduction
. 132
ίί.3.2
Cook's theorem
.
ПУЛ
(і.'Л.'Л
Growing
t
he class NPC of XP-complete problems
. . . 134
ii.
'ΛΛ
Optimization problems versus decision problems
. . . 135
(i.l Examples
oí'
NP-coinplete problems and reductions
.
J
3(>
П.4.Ј з-ЅАТ
.
їла
(і.
4.2
CLIQUE
.
13N
(і.
4.3
VERTEX-COVER
. 139
(і.
4.4
Scheduling problems
. 140
6.4.5
Other famous NP-complete j)rol)lems
. 142
(i.5 Importance of problem
flefíiiitioii
. 14,4
í).(í
Strong NP-coinpIeteness
. 145
(¡.7
Why does it matter?
.
14(i
(>.8 Bibliographical notes
.
14(i
7
Exercises on NP-completeness
149
7.1
Easy reductions
. 149
Exercise
7.1:
Wheel
. 149
Exercise
7.2:
Knights of the round table
. 149
Exercise
7.3:
Variants of CLIQUE
. 149
Exercise
7.4:
Path with vertex pairs
. 150
Exercise
7.5:
VERTEX-COVER with even degrees
. 150
Exercise
7.6:
Around
2-
PARTITION
. 150
7.2
About graph coloring
. 151
Exercise
7.7:
COLOR
. 151
Exercise
7.8:
S-COLOR
. 151
Exercise
7.9:
S-COLOR-PLAN
. 152
7.3
Scheduling problems
. 152
Exercise
7.10:
Scheduling independent tasks with
p
processors
152
8
їх
Exercise
7.11:
Scheduling with two processors
. 152
7.4
More involved reductions
. 153
Exercise
7.12:
Transitive subchain
. 153
Exercise
7.13:
INDEPENDENT SET
. 153
Exercise
7.14:
DOMINATING SET
. 153
Exercise
7.15:
Carpenter
. 153
Exercise
7.16:
fc-center
. 153
Exercise
7.17:
Variants of 3-SAT
. 154
Exercise
7.18:
Variants of SAT
. 154
7.5 2-
PARTITION is NP-complete
. 155
Exercise
7.19:
SUBSET-SUM
. 155
Exercise
7.20:
NP-completenoss of
2-
PARTITION
. 155
7.
β
Solutions to exercises
. 155
Solution to Exorcise
7.1:
Wheel
. 150
Solution to Exercise
7.2:
Knights of the round table
. 150
Solution to Exercise
7.3:
Variants of CLIQUE
. 157
Solution to Exorcise
7.4:
Path with vertex pairs
. 158
Solution to Exercise
7.5:
VERTEX-COVER with oven degrees
158
Solution to Exorcise
7.0:
Around 2-PARTITION
. 159
Solution to Exercise
7.7:
COLOR
. 100
Solution to Exercise
7.8:
3-COLOR
. 162
Solution to Exercise
7.9:
3-COLOR-PLAN
. 163
Solution to Exercise
7.10:
Scheduling independent tasks with
ρ
processors
. 100
Solution to Exercise
7.11:
Scheduling with two processors
. . 100
Solution to Exercise
7.12:
Transitive subchain
. 107
Solution to Exercise
7.13:
INDEPENDENT SET
. 108
Solution to Exercise
7.14:
DOMINATING SET
. 109
Solution to Exercise
7.15:
Carpenter
. 170
Solution to Exercise
7.16:
/c-center
. 171
Solution to Exercise
7.17:
Variants of 3-SAT
. 172
Solution to Exercise
7.18:
Variants of SAT
. 174
Solution to Exercise
7.19:
SUBSET-SUM
. 175
Solution to Exercise
7.20:
NP-completeness of 2-PARTITION
177
7.7
Bibliographical notes
. 178
Beyond NP-completeness
179
8.1
Approximation results
. 179
8.1.1
Approximation algorithms
. 180
8.1.2
Vertex cover
. 181
8.1.3
Traveling salesman problem (TSP)
. 182
8.1.4
Bin packing
. 183
8.1.5
2-PARTITION
. 187
8.2
Polynomial problem instances
. 192
8.2.1
Partitioning problems
. 193
χ
S.
2.2
Assessing
prob
loin complexity
.
ïi)-i
8.3
Linear programming
.
l·^·1
5.
3.1
Formal definition
.
Н)5
5.
3.2
Relaxation
and rounding
. 19"
8.4
Randomized algorithms
. 200
5.
4.1
The algorithm
.
2(>1
8.4.2
Results
. 201
8.5
Branch-and-bound and backtracking
. 202
8.5.1
Backtracking: The
η
queens
. 203
8.
Γ),
2
Branch-and-bound: The knapsack
. 204
8.5.3
Graph algorithms
. 200
8.Ѓ)
Bibliographical notes
. '209
9
Exercises going beyond NP-completeness
211
9.1
Approximation results
. 211
Exercise
9. 1:
Single machine scheduling
. 211
Exercise
9.2:
SUBSET-SUM
. 212
Exercise
9.3:
SET-COVER
. 213
Exercise!).!: VERTEX-COVER
. 213
Exercise
Ił.
Гг.
Scheduling independent tasks in parallel
. 215
Exercise1
ÍJ.ŕi:
Point clustering
. 215
Exercise I).
7:
A-center
. 2
Hi
Exercise
9.8:
Knapsack
. 217
9.2
Dealing with NP-complete problems
. 218
Exercise
í).!):
Mixed integer linear program for replica place¬
ment
. 218
Exercise
9.10:
A randomized algorithm for independent set
. 218
Exercise
9.11:
Braneh-and-bound applied to MAX-SAT
. . . 219
9.3
Solutions to exercises
. 219
Solution to Exercise
9.1:
Single machine scheduling
. 219
Solution to Exercise
9.2:
SUBSET-SUM
. 221
Solution to Exercise
9.3:
SET-COVER
. 223
Solution to Exercise
9.4:
VERTEX-COVER
. 224
Solution to Exercise
9.5:
Scheduling independent tasks in par¬
allel
. 226
Solution to Exercise
9.6:
Point clustering
. 228
Solution to Exercise
9.7:
^-center
. 229
Solution to Exercise
9.8:
Knapsack
. 231
Solution to Exercise
9.9:
Mixed integer linear program for
replica placement
. 234
Solution to Exercise
9.10:
A randomized algorithm for inde¬
pendent set
. 237
Solution to Exercise
9.11:
Branch-and-bound applied to MAX-
SAT
. 237
9.4
Bibliographical notes
. 238
Xl
III Reasoning on problem complexity
239
10
Reasoning to assess a problem complexity
241
10.1
Basic reasoning
. 241
10.1.1
Polynomial instances
. 241
10.1.2
XP-complete instances
. 242
10.2
Set of problems with polynomial-time algorithms
. 243
10.3
Set of NP-complete problems
. 244
10.3.1
Numbers
. 245
10.3.2
Graphs
. 246
11
Chains-on-chains partitioning
249
11.1
Optimal algorithms for homogeneous resources
. 249
11.1.1
Dynamic-programming algorithm
. 250
11.1.2
Binary search algorithm
. 250
11.1.3
Improved algorithms
. 250
11.2
Variants of
t
ho problem
. 252
11.2.1
Communication costs
. 252
11.2.2
Chain of heterogeneous resources
. 253
11.3
Extension to
n
clique of heterogeneous resources
. 254
11.3.1
NP-coinplotonoss
. 254
11.3.2
Practical solutions
. 257
11.3.3
Integer linear program
. 257
11.4
Conclusion
. 258
12
Replica placement in tree networks
261
12.1
Access policies
. 262
12.1.1
Motivation
. 262
12.1.2
Impact of the policies on the existence of a solution
. 263
12.1.3
Impact of the policies on the cost of a solution
. 264
12.2
Complexity results
. 206
12.2.1
Definitions
. 266
12.2.2
MinNb problem
. 267
12.2.3
MIXCOST problem
. 273
12.2.4
Integer linear program
. 275
12.3
Variants of the replica placement problem
. 279
12.3.1
Enforcing a quality of service
. 280
12.3.2
Power-aware replica placement
. 282
12.4
Conclusion
. 286
13
Packet routing
287
13.1
MEDP: Maximum edge-disjoint paths
. 288
13.1.1
Problem statement
. 288
13.1.2
Naive greedy algorithm
. 289
13.1.3
Short-requests-first greedy algorithm
. 291
Xli
l'i.
1.4
Inapproxhiiability
result
.
2Í)2
13.2
PRVP:
Packet
routing; with variable-paths
. 204
13.2.1
Problem statement
. 294
13.2.2
Bounding optimal nmkespan via linear programming
-
2íí5
13.2.3
Routing algorithm
. 207
13.2.4
Steady-state approach
. 300
13.3
Conclusion
. 301
14
Matrix product, or tiling the unit square
303
14.1
Problem motivation
. 304
14.2
XP-coinpleteness
. 307
14.3
A guaranteed heuristic
. 31
J
14.3.1
The
ColPkhiSí'm(,s·)
problem
. 312
14.3.2
Performance guarantee
.
3Hi
14.3.3
Looking for a better solution
. 317
14.4
Related problems
. 320
15
Online scheduling
321
15.1
Flow time optimization
. 322
15.2
Competitive analysis
. 324
15.2.1
Definition
. 324
15.2.2
Method to establish a competitive analysis result
. . . 327
15.3 Makespan
optimization
. 334
15.3.1
List scheduling algorithms
. 335
15.3.2
Randomized optimization of niakespan
.
33S
15.4
Conclusion
. 347
References
349
Index
359 |
any_adam_object | 1 |
author | Benoit, Anne Robert, Yves 1958- Vivien, Frédéric |
author_GND | (DE-588)1042919720 (DE-588)1042919046 |
author_facet | Benoit, Anne Robert, Yves 1958- Vivien, Frédéric |
author_role | aut aut aut |
author_sort | Benoit, Anne |
author_variant | a b ab y r yr f v fv |
building | Verbundindex |
bvnumber | BV040795638 |
classification_rvk | ST 134 |
classification_tum | DAT 530f |
ctrlnum | (OCoLC)859367586 (DE-599)HBZHT017051379 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV040795638</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140311</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">130305s2014 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439825648</subfield><subfield code="c">hbk</subfield><subfield code="9">978-1-4398-2564-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)859367586</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT017051379</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 134</subfield><subfield code="0">(DE-625)143590:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benoit, Anne</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042919720</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A guide to algorithm design</subfield><subfield code="b">paradigms, methods, and complexity analysis</subfield><subfield code="c">Anne Benoit, Yves Robert and Frédéric Vivien</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton [u.a.]</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 362 S.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC applied algorithms and data structures series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Datenstruktur</subfield><subfield code="0">(DE-588)4011146-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robert, Yves</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1042919046</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vivien, Frédéric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025775845&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025775845</subfield></datafield></record></collection> |
id | DE-604.BV040795638 |
illustrated | Not Illustrated |
indexdate | 2025-03-07T09:01:23Z |
institution | BVB |
isbn | 9781439825648 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025775845 |
oclc_num | 859367586 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-473 DE-BY-UBG DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 |
physical | XVII, 362 S. 24 cm |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | CRC Press |
record_format | marc |
series2 | Chapman & Hall/CRC applied algorithms and data structures series |
spellingShingle | Benoit, Anne Robert, Yves 1958- Vivien, Frédéric A guide to algorithm design paradigms, methods, and complexity analysis Computer (DE-588)4070083-5 gnd Datenstruktur (DE-588)4011146-5 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4070083-5 (DE-588)4011146-5 (DE-588)4001183-5 |
title | A guide to algorithm design paradigms, methods, and complexity analysis |
title_auth | A guide to algorithm design paradigms, methods, and complexity analysis |
title_exact_search | A guide to algorithm design paradigms, methods, and complexity analysis |
title_full | A guide to algorithm design paradigms, methods, and complexity analysis Anne Benoit, Yves Robert and Frédéric Vivien |
title_fullStr | A guide to algorithm design paradigms, methods, and complexity analysis Anne Benoit, Yves Robert and Frédéric Vivien |
title_full_unstemmed | A guide to algorithm design paradigms, methods, and complexity analysis Anne Benoit, Yves Robert and Frédéric Vivien |
title_short | A guide to algorithm design |
title_sort | a guide to algorithm design paradigms methods and complexity analysis |
title_sub | paradigms, methods, and complexity analysis |
topic | Computer (DE-588)4070083-5 gnd Datenstruktur (DE-588)4011146-5 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | Computer Datenstruktur Algorithmus |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025775845&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT benoitanne aguidetoalgorithmdesignparadigmsmethodsandcomplexityanalysis AT robertyves aguidetoalgorithmdesignparadigmsmethodsandcomplexityanalysis AT vivienfrederic aguidetoalgorithmdesignparadigmsmethodsandcomplexityanalysis |
Inhaltsverzeichnis
Paper/Kapitel scannen lassen
Paper/Kapitel scannen lassen
Teilbibliothek Mathematik & Informatik
Signatur: | 0102 DAT 530f 2014 A 205 |
---|---|
Exemplar 1 | Ausleihbar Am Standort |