Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Flexible AC transmission syste...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Main Authors: Zhang, Xiao-Ping (Author), Rehtanz, Christian (Author), Pal, Bikash 1968- (Author)
Format: Book
Language:English
Published: Heidelberg [u.a.] Springer 2012
Series:Power systems
Subjects:
Netzregelung
Lastfluss
Netzstabilität > Elektrische Energietechnik
FACTS-Anlage
Netzbetrieb
Elektrizitätsversorgungsnetz
Links:http://deposit.dnb.de/cgi-bin/dokserv?id=3966031&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:XXVIII, 550 S. Ill., graph. Darst.
ISBN:9783642282409
3642282407
9783642282416
Staff View

MARC

LEADER 00000nam a2200000 c 4500
001 BV040301761
003 DE-604
005 20120810
007 t|
008 120709s2012 gw ad|| |||| 00||| eng d
015 |a 12,N05  |2 dnb 
015 |a 12,A15  |2 dnb 
016 7 |a 101914291X  |2 DE-101 
020 |a 9783642282409  |9 978-3-642-28240-9 
020 |a 3642282407  |9 3-642-28240-7 
020 |a 9783642282416  |c eISBN  |9 978-3-642-28241-6 
024 3 |a 9783642282409 
035 |a (OCoLC)794511149 
035 |a (DE-599)DNB101914291X 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-83  |a DE-29T 
082 0 |a 621.3192  |2 22/ger 
082 0 |a 621.317  |2 22/ger 
084 |a ZN 8510  |0 (DE-625)157629:  |2 rvk 
084 |a ZN 8520  |0 (DE-625)157630:  |2 rvk 
084 |a 621.3  |2 sdnb 
100 1 |a Zhang, Xiao-Ping  |e Verfasser  |0 (DE-588)130890332  |4 aut 
245 1 0 |a Flexible AC transmission systems  |b modelling and control  |c Xiao-Ping Zhang ; Christian Rehtanz ; Bikash Pal 
264 1 |a Heidelberg [u.a.]  |b Springer  |c 2012 
300 |a XXVIII, 550 S.  |b Ill., graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Power systems 
650 0 7 |a Netzregelung  |0 (DE-588)4171525-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Lastfluss  |0 (DE-588)4166833-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Netzstabilität  |g Elektrische Energietechnik  |0 (DE-588)4415875-0  |2 gnd  |9 rswk-swf 
650 0 7 |a FACTS-Anlage  |0 (DE-588)4665808-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Netzbetrieb  |0 (DE-588)4171506-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Elektrizitätsversorgungsnetz  |0 (DE-588)4121178-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Elektrizitätsversorgungsnetz  |0 (DE-588)4121178-9  |D s 
689 0 1 |a FACTS-Anlage  |0 (DE-588)4665808-7  |D s 
689 0 2 |a Netzregelung  |0 (DE-588)4171525-1  |D s 
689 0 3 |a Netzbetrieb  |0 (DE-588)4171506-8  |D s 
689 0 4 |a Lastfluss  |0 (DE-588)4166833-9  |D s 
689 0 5 |a Netzstabilität  |g Elektrische Energietechnik  |0 (DE-588)4415875-0  |D s 
689 0 |5 DE-604 
700 1 |a Rehtanz, Christian  |e Verfasser  |4 aut 
700 1 |a Pal, Bikash  |d 1968-  |e Verfasser  |0 (DE-588)130890340  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |t Flexible AC Transmission Systems: Modelling and Control 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3966031&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-025156779 

Record in the Search Index

_version_ 1819351183918104576
adam_text IMAGE 1 CONTENTS 1 FACTS-DEVICES AND APPLICATIONS 1 1.1 OVERVIEW 2 1.2 POWER ELECTRONICS 5 1.2.1 SEMICONDUCTORS 6 1.2.2 POWER CONVERTERS 8 1.3 CONFIGURATIONS O F FACTS-DEVICES 13 1.3.1 SHUNT DEVICES 13 1.3.1.1 SVC 14 1.3.1.2 STATCOM 15 1.3.2 SERIES DEVICES 18 1.3.2.1 SERIES COMPENSATION 18 1.3.2.2 TCSC 19 1.3.2.3 SSSC 21 1.3.2.4 SCCL 22 1.3.3 SHUNT AND SERIES DEVICES 23 1.3.3.1 DYNAMIC POWER FLOW CONTROLLER 23 1.3.3.2 UNIFIED POWER FLOW CONTROLLER 25 1.3.3.3 INTERLINE POWER FLOW CONTROLLER 26 1.3.3.4 GENERALIZED UNIFIED POWER FLOW CONTROLLER 27 1.3.4 BACK-TO-BACK DEVICES 28 REFERENCES 29 2 MODELING O F MULTI-FUNCTIONAL SINGLE CONVERTER FACTS IN POWER FLOW ANALYSIS 3 2.1 POWER FLOW CALCULATIONS 31 2.1.1 POWER FLOW METHODS 31 2.1.2 CLASSIFICATION O F BUSES 32 2.1.3 NEWTON-RAPHSON POWER FLOW IN POLAR COORDINATES 32 2.2 MODELING O F MULTI-FUNCTIONAL STATCOM 32 2.2.1 MULTI-CONTROL FUNCTIONAL MODEL OF STATCOM FOR POWER FLOW ANALYSIS 33 2.2.1.1 OPERATION PRINCIPLES O F THE STATCOM 33 2.2.1.2 POWER FLOW CONSTRAINTS O F THE STATCOM 34 2.2.1.3 MULTI-CONTROL FUNCTIONS O F THE STATCOM 35 2.2.1.4 VOLTAGE AND THERMAL CONSTRAINTS O F THE STATCOM 39 2.2.1.5 EXTERNAL VOLTAGE CONSTRAINTS 4 0 HTTP://D-NB.INFO/101914291X IMAGE 2 XVI CONTENTS 2.2.2 IMPLEMENTATION O F MULTI-CONTROL FUNCTIONAL MODEL OF STATCOM IN NEWTON POWER FLOW 4 0 2.2.2.1 MULTI-CONTROL FUNCTIONAL MODEL O F STATCOM IN NEWTON POWER FLOW 4 0 2.2.2.2 MODELING O F CONSTRAINT ENFORCEMENT IN NEWTON POWER FLOW 41 2.2.3 MULTI-VIOLATED CONSTRAINTS ENFORCEMENT 42 2.2.3.1 PROBLEM O F MULTI-VIOLATED CONSTRAINTS ENFORCEMENT 42 2.2.3.2 CONCEPTS O F DOMINANT CONSTRAINT AND DEPENDENT CONSTRAINT 43 2.2.3.3 STRATEGY FOR MULTI-VIOLATED CONSTRAINTS ENFORCEMENT 4 3 2.2.4 MULTIPLE SOLUTIONS O F STATCOM WITH CURRENT MAGNITUDE CONTROL 44 2.2.5 NUMERICAL EXAMPLES 45 2.2.5.1 MULTI-CONTROL CAPABILITIES O F STATCOM 45 2.2.5.2 MULTI-VIOLATED STATCOM CONSTRAINTS ENFORCEMENT 48 2.3 MODELING OF MULTI-CONTROL FUNCTIONAL SSSC 50 2.3.1 MULTI-CONTROL FUNCTIONAL MODEL O F SSSC FOR POWER FLOW ANALYSIS 51 2.3.1.1 OPERATION PRINCIPLES O F THE SSSC 51 2.3.1.2 EQUIVALENT CIRCUIT AND POWER FLOW CONSTRAINTS O F SSSC 51 2.3.1.3 MULTI-CONTROL FUNCTIONS AND CONSTRAINTS O F SSSC ...53 2.3.1.4 VOLTAGE AND CURRENT CONSTRAINTS O F THE SSSC 54 2.3.2 IMPLEMENTATION O F MULTI-CONTROL FUNCTIONAL MODEL OF SSSC IN NEWTON POWER FLOW 55 2.3.2.1 MULTI-CONTROL FUNCTIONAL MODEL O F SSSC IN NEWTON POWER FLOW 55 2.3.2.2 ENFORCEMENT O F VOLTAGE AND CURRENT CONSTRAINTS FOR SSSC 5 6 2.3.2.3 INITIALIZATION O F SSSC IN NEWTON POWER FLOW 57 2.3.3 NUMERICAL RESULTS 58 2.3.3.1 POWER FLOW, VOLTAGE AND REACTANCE CONTROL BY THE SSSC 58 2.3.3.2 ENFORCEMENT OF VOLTAGE AND CURRENT CONSTRAINT O F THE SSSC 61 2.4 MODELING OF SVC AND TCSC IN POWER FLOW ANALYSIS 62 2.4.1 REPRESENTATION O F SVC BY STATCOM IN POWER FLOW ANALYSIS 62 2.4.2 REPRESENTATION OF TCSC BY SSSC IN POWER FLOW ANALYSIS 63 REFERENCES 64 IMAGE 3 CONTENTS XVII 3 MODELING O F MULTI-CONVERTER FACTS IN POWER FLOW ANALYSIS 67 3.1 MODELING O F MULTI-CONTROL FUNCTIONAL UPFC 67 3.1.1 ADVANCED UPFC MODELS FOR POWER FLOW ANALYSIS 68 3.1.1.1 OPERATING PRINCIPLES O F UPFC 68 3.1.1.2 POWER FLOW CONSTRAINTS OF UPFC 69 3.1.1.3 ACTIVE POWER BALANCE CONSTRAINT OF UPFC 70 3.1.1.4 NOVEL CONTROL MODES O F UPFC 7 0 3.1.2 IMPLEMENTATION O F ADVANCED UPFC MODEL IN NEWTON POWER FLOW 75 3.1.2.1 MODELING OF UPFC IN NEWTON POWER FLOW 75 3.1.2.2 MODELING O F VOLTAGE AND CURRENT CONSTRAINTS OF THE UPFC 7 6 3.1.2.3 INITIALIZATION O F UPFC VARIABLES IN NEWTON POWER FLOW 76 3.1.3 NUMERICAL RESULTS 77 3.2 MODELING O F MULTI-CONTROL FUNCTIONAL IPFC AND GUPFC 79 3.2.1 MATHEMATICAL MODELING O F IPFC IN NEWTON POWER FLOW UNDER PRACTICAL CONSTRAINTS 80 3.2.1.1 MATHEMATICAL MODEL O F THE IPFC 80 3.2.1.2 MODELING O F IPFC IN NEWTON POWER FLOW 83 3.2.1.3 INITIALIZATION O F IPFC VARIABLES IN NEWTON POWER FLOW 84 3.2.2 MATHEMATICAL MODELING OF GUPFC IN NEWTON POWER FLOW UNDER PRACTICAL CONSTRAINTS 85 3.2.2.1 MATHEMATICAL MODEL O F GUPFC 85 3.2.2.2 MODELING O F THE GUPFC IN NEWTON POWER FLOW 88 3.2.2.3 INITIALIZATION O F GUPFC VARIABLES IN NEWTON POWER FLOW 89 3.2.3 NUMERICAL EXAMPLES 89 3.2.3.1 INITIALIZATION O F THE POWER FLOW WITH FACTS-DEVICES 90 3.2.3.2 ENFORCEMENT O F PRACTICAL CONSTRAINTS O F FACTS 91 3.2.3.3 ENFORCEMENT O F PRACTICAL CONSTRAINTS O F SERIES CONVERTERS 92 3.2.3.4 ENFORCEMENT O F PRACTICAL CONSTRAINTS O F THE SHUNT CONVERTER 92 3.2.3.5 ENFORCEMENT O F SERIES AND SHUNT CONVERTER CONSTRAINTS 92 3.3 MULTI-TERMINAL VOLTAGE SOURCE CONVERTER BASED HVDC 93 3.3.1 MATHEMATICAL MODEL O F M-VSC-HVDC WITH CONVERTERS CO-LOCATED IN THE SAME SUBSTATION 94 3.3.1.1 OPERATING PRINCIPLES O F M-VSC-HVDC 94 3.3.1.2 POWER FLOW CONSTRAINTS O F M-VSC-HVDC 95 3.3.1.3 ACTIVE POWER BALANCE O F M-VSC-HVDC 96 IMAGE 4 XVIII CONTENTS 3.3.1.4 VOLTAGE AND POWER FLOW CONTROL OF M-VSC-HVDC 96 3.3.1.5 VOLTAGE AND CURRENT CONSTRAINTS OF M-VSC-HVDC 98 3.3.1.6 MODELING O F M-VSC-HVDC IN NEWTON POWER FLOW 98 3.3.1.7 HANDLING O F INTERNAL VOLTAGE AND CURRENT LIMITS OF M-VSC-HVDC 99 3.3.1.8 COMPARISON OF M-VSC-HVDC AND GUPFC 99 3.3.2 GENERALIZED M-VSC-HVDC MODEL WITH INCORPORATION OF DC NETWORK EQUATION 100 3.3.2.1 GENERALIZED M-VSC-HVDC 100 3.3.2.2 DC NETWORK EQUATION 101 3.3.2.3 INCORPORATION O F DC NETWORK EQUATION INTO NEWTON POWER FLOW 102 3.3.3 NUMERICAL EXAMPLES 103 3.3.3.1 COMPARISON O F THE M-VSC-HVDC TO THE GUPFC 103 3.3.3.2 POWER FLOW AND VOLTAGE CONTROL BY M-VSC-HVDC 104 3.4 HANDLING OF SMALL IMPEDANCES O F FACTS IN POWER FLOW ANALYSIS... 107 3.4.1 NUMERICAL INSTABILITY OF VOLTAGE SOURCE CONVERTER FACTS MODELS 107 3.4.2 IMPEDANCE COMPENSATION MODEL 108 REFERENCES 110 4 MODELING OF FACTS-DEVICES IN OPTIMAL POWER FLOW ANALYSIS 113 4.1 OPTIMAL POWER FLOW ANALYSIS 113 4.1.1 BRIEF HISTORY OF OPTIMAL POWER FLOW 113 4.1.2 COMPARISON O F OPTIMAL POWER FLOW TECHNIQUES 114 4.1.2.1 GRADIENT METHODS 114 4.1.2.2 LINEAR PROGRAMMING METHODS 114 4.1.2.3 QUADRATIC PROGRAMMING METHODS 115 4.1.2.4 NEWTON S METHODS 115 4.1.2.5 INTERIOR POINT METHODS 116 4.1.3 OVERVIEW O F OPF-FORMULATION 116 4.2 NONLINEAR INTERIOR POINT OPTIMAL POWER FLOW METHODS 118 4.2.1 POWER MISMATCH EQUATIONS 118 4.2.2 TRANSMISSION LINE LIMITS 118 4.2.3 FORMULATION OF THE NONLINEAR INTERIOR POINT OPF 119 4.2.4 IMPLEMENTATION OF THE NONLINEAR INTERIOR POINT OPF 123 4.2.4.1 ELIMINATING DUAL VARIABLES JTL, 7IU OF THE INEQUALITIES 123 4.2.4.2 ELIMINATING GENERATOR VARIABLES P G AND Q G 124 4.2.5 SOLUTION PROCEDURE FOR THE NONLINEAR INTERIOR POINT OPF 126 IMAGE 5 CONTENTS XIX 4.3 MODELING O F FACTS IN OPF ANALYSIS 126 4.3.1 IPFC AND GUPFC IN OPTIMAL VOLTAGE AND POWER FLOW CONTROL 127 4.3.2 OPERATING AND CONTROL CONSTRAINTS O F GUPFC 127 4.3.2.1 POWER FLOW CONSTRAINTS O F GUPFC 128 4.3.2.2 OPERATING CONTROL EQUALITIES O F GUPFC 130 4.3.2.3 OPERATING INEQUALITIES O F GUPFC 130 4.3.3 INCORPORATION O F GUPFC INTO NONLINEAR INTERIOR POINT OPF 131 4.3.3.1 CONSTRAINTS OF GUPFC 131 4.3.3.2 VARIABLES OF GUPFC 131 4.3.3.3 AUGMENTED LAGRANGIAN FUNCTION O F GUPFC IN NONLINEAR INTERIOR OPF 133 4.3.3.4 NEWTON EQUATION O F NONLINEAR INTERIOR O P F WITH GUPFC 134 4.3.3.5 IMPLEMENTATION O F MULTI-CONFIGURATIONS AND MULTI-CONTROL FUNCTIONS O F GUPFC 135 4.3.3.6 INITIALIZATION O F GUPFC VARIABLES IN NONLINEAR INTERIOR OPF 136 4.3.4 MODELING O F IPFC IN NONLINEAR INTERIOR POINT OPF 137 4.4 MODELING OF MULTI-TERMINAL VSC-HVDC IN OPF 139 4.4.1 MULTI-TERMINAL VSC-HVDC IN OPTIMAL VOLTAGE AND POWER FLOW 139 4.4.2 OPERATING AND CONTROL CONSTRAINTS O F THE M-VSC-HVDC 140 4.4.3 MODELING O F M-VSC-HVDC IN THE NONLINEAR INTERIOR POINT OPF 141 4.5 COMPARISON O F FACTS-DEVICES WITH VSC-HVDC 143 4.5.1 COMPARISON O F UPFC WITH BTB-VSC-HVDC 143 4.5.2 COMPARISON O F GUPFC WITH M-VSC-HVDC 145 4.6 APPENDIX: DERIVATIVES O F NONLINEAR INTERIOR POINT OPF WITH GUPFC 148 4.6.1 FIRST DERIVATIVES O F NONLINEAR INTERIOR POINT OPF 148 4.6.2 SECOND DERIVATIVES O F NONLINEAR INTERIOR POINT OPF 150 REFERENCES 153 5 MODELING O F FACTS IN THREE-PHASE POWER FLOW AND THREE-PHASE OPF ANALYSIS 157 5.1 THREE-PHASE NEWTON POWER FLOW METHODS IN RECTANGULAR COORDINATES. 158 5.1.1 CLASSIFICATION OF BUSES 158 5.1.2 REPRESENTATION OF SYNCHRONOUS MACHINES 159 5.1.3 POWER AND VOLTAGE MISMATCH EQUATIONS IN RECTANGULAR COORDINATES 160 5.1.3.1 POWER MISMATCH EQUATIONS AT NETWORK BUSES 160 5.1.3.2 POWER AND VOLTAGE MISMATCH EQUATIONS OF SYNCHRONOUS MACHINES 161 IMAGE 6 X X CONTENTS 5.1.4 FORMULATION O F NEWTON EQUATIONS IN RECTANGULAR COORDINATES 162 5.2 THREE-PHASE NEWTON POWER FLOW METHODS IN POLAR COORDINATES 168 5.2.1 REPRESENTATION O F GENERATORS 168 5.2.2 POWER AND VOLTAGE MISMATCH EQUATIONS IN POLAR COORDINATES 169 5.2.2.1 POWER MISMATCH EQUATIONS AT NETWORK BUSES 169 5.2.2.2 POWER AND VOLTAGE MISMATCH EQUATIONS OF SYNCHRONOUS MACHINES 169 5.2.3 FORMULATION O F NEWTON EQUATIONS IN POLAR COORDINATES 170 5.3 SSSC MODELING IN THREE-PHASE POWER FLOW IN RECTANGULAR COORDINATES 171 5.3.1 THREE-PHASE SSSC MODEL WITH DELTA/WYE CONNECTED TRANSFORMER 172 5.3.1.1 BASIC OPERATION PRINCIPLES 172 5.3.1.2 EQUIVALENT CIRCUIT O F THREE-PHASE SSSC 173 5.3.1.3 POWER EQUATIONS OF THE THREE-PHASE SSSC 174 5.3.1.4 THREE-PHASE SSSC MODEL WITH INDEPENDENT PHASE POWER CONTROL 176 5.3.1.5 THREE-PHASE SSSC MODEL WITH TOTAL THREE-PHASE POWER CONTROL 177 5.3.1.6 THREE-PHASE SSSC MODEL WITH SYMMETRICAL INJECTED VOLTAGE CONTROL 178 5.3.2 SINGLE-PHASE/THREE-PHASE SSSC MODELS WITH SEPARATE SINGLE PHASE TRANSFORMERS 180 5.3.2.1 BASIC OPERATING PRINCIPLES OF SINGLE PHASE SSSC 180 5.3.2.2 EQUIVALENT CIRCUIT OF SINGLE PHASE SSSC 180 5.3.2.3 SINGLE-PHASE SSSC 181 5.3.2.4 THREE-PHASE SSSC MODEL WITH THREE SEPARATE SINGLE PHASE TRANSFORMERS 182 5.3.3 NUMERICAL EXAMPLES 182 5.3.3.1 TEST RESULTS FOR THE 5-BUS SYSTEM 183 5.3.3.2 TEST RESULTS FOR THE IEEE 118-BUS SYSTEM 186 5.4 UPFC MODELING IN THREE-PHASE NEWTON POWER FLOW IN POLAR COORDINATES 187 5.4.1 OPERATION PRINCIPLES O F THE THREE-PHASE UPFC 188 5.4.2 THREE-PHASE CONVERTER TRANSFORMER MODELS 189 5.4.3 POWER FLOW CONSTRAINTS OF THE THREE-PHASE UPFC 190 5.4.3.1 POWER FLOW CONSTRAINTS OF THE SHUNT CONVERTER 190 5.4.3.2 POWER FLOW CONSTRAINTS OF THE SERIES CONVERTER 192 5.4.3.3 ACTIVE POWER BALANCE O F THE UPFC 194 5.4.4 SYMMETRICAL COMPONENTS CONTROL MODEL FOR THREE-PHASE UPFC 195 5.4.4.1 PQ FLOW CONTROL BY THE SERIES CONVERTER 195 5.4.4.2 VOLTAGE CONTROL BY THE SHUNT CONVERTER 196 IMAGE 7 CONTENTS XXI 5.4.4.3 TRANSFORMER MODELS 197 5.4.4.4 MODELING O F THREE-PHASE UPFC IN NEWTON POWER FLOW 197 5.4.5 GENERAL THREE-PHASE CONTROL MODEL FOR THREE-PHASE UPFC 198 5.4.5.1 PQ FLOW CONTROL BY THE SERIES CONVERTER 198 5.4.5.2 VOLTAGE CONTROL BY THE SHUNT CONVERTER 198 5.4.5.3 OPERATING CONSTRAINTS O F THE SHUNT TRANSFORMER 198 5.4.5.4 TRANSFORMER MODELS 199 5.4.5.5 MODELING O F THREE-PHASE UPFC IN NEWTON POWER FLOW 199 5.4.6 HYBRID CONTROL MODEL FOR THREE-PHASE UPFC 200 5.4.6.1 PQ FLOW CONTROL BY THE SERIES CONVERTER 200 5.4.6.2 VOLTAGE CONTROL BY THE SHUNT CONVERTER 200 5.4.6.3 TRANSFORMER MODELS 201 5.4.6.4 MODELING O F THREE-PHASE UPFC IN THE NEWTON POWER FLOW 201 5.4.7 NUMERICAL EXAMPLES 202 5.4.7.1 RESULTS FOR THE 5-BUS SYSTEM 202 5.4.7.2 RESULTS FOR THE MODIFIED IEEE 118-BUS SYSTEM 206 5.5 THREE-PHASE NEWTON OPF IN POLAR COORDINATES 207 5.6 APPENDIX A - DEFINITION O F YGI 209 5.7 APPENDIX B - 5-BUS TEST SYSTEM 210 REFERENCES 211 6 STEADY STATE POWER SYSTEM VOLTAGE STABILITY ANALYSIS AND CONTROL WITH FACTS 213 6.1 CONTINUATION POWER FLOW METHODS FOR STEADY STATE VOLTAGE STABILITY ANALYSIS 214 6.1.1 FORMULATION O F CONTINUATION POWER FLOW 214 6.1.2 MODELING O F OPERATING LIMITS O F SYNCHRONOUS MACHINES 216 6.1.3 SOLUTION PROCEDURE O F CONTINUATION POWER FLOW 217 6.1.4 MODELING O F FACTS-CONTROL IN CONTINUATION POWER FLOW....218 6.1.5 NUMERICAL RESULTS 218 6.1.5.1 SYSTEM LOADABILITY WITH FACTS-DEVICES 218 6.1.5.2 EFFECT O F LOAD MODELS 220 6.1.5.3 SYSTEM TRANSFER CAPABILITY WITH FACTS-DEVICES 222 6.2 OPTIMIZATION METHODS FOR STEADY STATE VOLTAGE STABILITY ANALYSIS....223 6.2.1 OPTIMIZATION METHOD FOR VOLTAGE STABILITY LIMIT DETERMINATION 224 6.2.2 OPTIMIZATION METHOD FOR VOLTAGE SECURITY LIMIT DETERMINATION 225 6.2.3 OPTIMIZATION METHOD FOR OPERATING SECURITY LIMIT DETERMINATION 225 6.2.4 OPTIMIZATION METHOD FOR POWER FLOW UNSOLVABILITY 226 IMAGE 8 XXII CONTENTS 6.2.5 NUMERICAL EXAMPLES 228 6.2.5.1 IEEE 30-BUS SYSTEM RESULTS 228 6.2.5.2 IEEE 118-BUS SYSTEM RESULTS 229 6.3 SECURITY CONSTRAINED OPTIMAL POWER FLOW FOR TRANSFER CAPABILITY CALCULATIONS 230 6.3.1 UNIFIED TRANSFER CAPABILITY COMPUTATION METHOD WITH SECURITY CONSTRAINTS 231 6.3.2 SOLUTION O F UNIFIED SECURITY CONSTRAINED TRANSFER CAPABILITY PROBLEM BY NONLINEAR INTERIOR POINT METHOD 233 6.3.3 SOLUTION PROCEDURE O F THE SECURITY CONSTRAINED TRANSFER CAPABILITY PROBLEM 239 6.3.4 NUMERICAL RESULTS 239 6.3.4.1 IEEE 30-BUS SYSTEM RESULTS 240 6.3.4.2 DISCUSSION O F THE RESULTS 241 REFERENCES 243 7 STEADY STATE VOLTAGE STABILITY O F UNBALANCED THREE-PHASE POWER SYSTEMS 245 7.1 STEADY STATE UNBALANCED THREE-PHASE POWER SYSTEM VOLTAGE STABILITY 245 7.2 CONTINUATION THREE-PHASE POWER FLOW APPROACH 246 7.2.1 MODELING O F SYNCHRONOUS MACHINES WITH OPERATING LIMITS 246 7.2.2 THREE-PHASE POWER FLOW IN POLAR COORDINATES 247 7.2.3 FORMULATION O F CONTINUATION THREE-PHASE POWER FLOW 249 7.2.4 SOLUTION O F THE CONTINUATION THREE-PHASE POWER FLOW 251 7.2.5 IMPLEMENTATION ISSUES OF CONTINUATION THREE-PHASE POWER FLOW 252 7.2.5.1 THE STRUCTURE O F JACOBIAN MATRIX 252 7.2.5.2 IMPROVEMENT O F COMPUTATIONAL SPEED 252 7.2.5.3 COMPARISON O F BALANCED THREE-PHASE SYSTEMS AND SINGLE-PHASE SYSTEMS 252 7.2.6 NUMERICAL RESULTS 253 7.2.6.1 RESULTS FOR THE 5-BUS SYSTEM WITHOUT LINE OUTAGES 253 7.2.6.2 RESULTS FOR THE 5-BUS SYSTEM WITH LINE OUTAGES ....256 7.2.6.3 RESULTS FOR THE MODIFIED IEEE 118-BUS SYSTEM 258 7.2.6.4 REACTIVE POWER LIMITS 259 7.3 STEADY STATE UNBALANCED THREE-PHASE VOLTAGE STABILITY WITH FACTS 261 7.3.1 STATCOM 262 7.3.2 SSSC 263 7.3.3 UPFC 265 REFERENCES 266 IMAGE 9 CONTENTS XXIII 8 CONGESTION MANAGEMENT AND LOSS OPTIMIZATION WITH FACTS 269 8.1 FAST POWER FLOW CONTROL IN ENERGY MARKETS 269 8.1.1 OPERATION STRATEGY 269 8.1.2 CONTROL SCHEME 271 8.2 PLACEMENT OF POWER FLOW CONTROLLERS 272 8.3 ECONOMIC EVALUATION METHOD 275 8.3.1 MODELLING O F PFC FOR CROSS-BORDER CONGESTION MANAGEMENT 276 8.3.1.1 BASIC NETWORK MODEL 276 8.3.1.2 INCLUSION O F S L O W P F C 278 8.3.1.3 INCLUSION O F F A S T P F C 279 8.3.2 DETERMINATION O F CROSS-BORDER TRANSMISSION CAPACITY 280 8.3.3 ESTIMATION O F ECONOMIC BENEFITS THROUGH PFC 281 8.4 QUANTIFIED BENEFITS O F POWER FLOW CONTROLLERS 284 8.4.1 TRANSMISSION CAPACITY INCREASE 284 8.4.2 LOSS REDUCTION 286 8.5 APPENDIX 289 REFERENCES 290 9 NON-INTRUSIVE SYSTEM CONTROL OF FACTS 291 9.1 REQUIREMENT SPECIFICATION 291 9.1.1 MODULARIZED NETWORK CONTROLLERS 292 9.1.2 CONTROLLER SPECIFICATION 293 9.2 ARCHITECTURE 294 9.2.1 NISC-APPROACH FOR REGULAR OPERATION 296 9.2.2 NISC-APPROACH FOR CONTINGENCY OPERATION 298 REFERENCES 299 10 AUTONOMOUS SYSTEMS FOR EMERGENCY AND STABILITY CONTROL OF FACTS 301 10.1 AUTONOMOUS SYSTEM STRUCTURE 301 10.2 AUTONOMOUS SECURITY AND EMERGENCY CONTROL 303 10.2.1 MODEL AND CONTROL STRUCTURE 303 10.2.2 GENERIC RULES FOR COORDINATION 304 10.2.3 SYNTHESIS O F THE AUTONOMOUS CONTROL SYSTEM 307 10.2.3.1 BAY CONTROL LEVEL 307 10.2.3.2 SUBSTATION AND NETWORK CONTROL LEVEL 309 10.2.3.3 PREVENTIVE COORDINATION 311 10.3 ADAPTIVE SMALL SIGNAL STABILITY CONTROL 313 10.3.1 AUTONOMOUS COMPONENTS FOR DAMPING CONTROL 313 10.4 VERIFICATION 314 10.4.1 FAILURE O F A TRANSMISSION LINE 316 10.4.2 INCREASE O F LOAD 318 REFERENCES 320 IMAGE 10 XXIV CONTENTS 11 MULTI-AGENT SYSTEMS FOR COORDINATED CONTROL O F FACTS-DEVICES 321 11.1 CHALLENGES FOR COORDINATED CONTROL 321 11.2 MULTI-AGENT SYSTEM STRUCTURE 322 11.2.1 COMMUNICATION MODEL 322 11.2.1.1 PRINCIPLE COMMUNICATION AMONG AGENTS 323 11.2.1.2 COMMUNICATION RULES 324 11.2.2 INFLUENCE AREA OF A PFC 325 11.2.2.1 CALCULATING THE SENSITIVITY 325 11.2.2.2 ASSIGNING THE DIRECTION O F IMPACT 326 11.2.3 DISTRIBUTED COORDINATION 327 11.2.3.1 WEIGHTING FUNCTION 328 11.2.3.2 CONTROL O F PFCS 330 11.3 VERIFICATION 331 11.3.1 TRIPPING OF A TRANSMISSION LINE 331 11.3.2 INCREASE OF LOAD 334 REFERENCES 336 12 WIDE AREA CONTROL OF FACTS 339 12.1 WIDE AREA MONITORING AND CONTROL SYSTEM 339 12.2 WIDE AREA MONITORING APPLICATIONS 342 12.2.1 CORRIDOR VOLTAGE STABILITY MONITORING 342 12.2.2 THERMAL LIMIT MONITORING 346 12.2.3 OSCILLATORY STABILITY MONITORING 347 12.2.4 TOPOLOGY DETECTION AND STATE CALCULATION 352 12.2.5 LOADABILITY CALCULATION BASED ON OPF TECHNIQUES 354 12.2.6 VOLTAGE STABILITY PREDICTION 355 12.3 WIDE AREA CONTROL APPLICATIONS 358 12.3.1 PREDICTIVE CONTROL WITH SETPOINT OPTIMIZATION 359 12.3.2 REMOTE FEEDBACK CONTROL 362 REFERENCES 369 13 MODELING OF POWER SYSTEMS FOR SMALL SIGNAL STABILITY ANALYSIS WITH FACTS 371 13.1 SMALL SIGNAL MODELING 372 13.1.1 SYNCHRONOUS GENERATORS 372 13.1.2 EXCITATION SYSTEMS 374 13.1.3 TURBINE AND GOVERNOR MODEL 376 13.1.4 LOAD MODEL 376 13.1.5 NETWORK AND POWER FLOW MODEL 379 13.1.6 FACTS-MODELS 379 13.1.6.1 SVC-MODEL 380 13.1.6.2 TCPS-MODEL 381 13.1.6.3 TCSC-MODEL 384 13.1.7 STUDY SYSTEM 386 13.2 EIGENVALUE ANALYSIS 387 13.2.1 SMALL SIGNAL STABILITY RESULTS O F STUDY SYSTEM 387 IMAGE 11 CONTENTS X X V 13.2.2 EIGENVECTOR, MODE SHAPE AND PARTICIPATION FACTOR 393 13.3 MODAL CONTROLLABILITY, OBSERVABILITY AND RESIDUE 396 REFERENCES 400 14 LINEAR CONTROL DESIGN AND SIMULATION O F POWER SYSTEM STABILITY WITH FACTS 401 14.1 H-INFINITY MIXED-SENSITIVITY FORMULATION 402 14.2 GENERALIZED H-INFINITY PROBLEM WITH POLE PLACEMENT 403 14.3 MATRIX INEQUALITY FORMULATION 405 14.4 LINEARIZATION OF MATRIX INEQUALITIES 406 14.5 CASE STUDY 408 14.5.1 WEIGHT SELECTION 408 14.5.2 CONTROL DESIGN 409 14.5.3 PERFORMANCE EVALUATION 412 14.5.4 SIMULATION RESULTS 413 14.6 CASE STUDY ON SEQUENTIAL DESIGN 416 14.6.1 TEST SYSTEM 416 14.6.2 CONTROL DESIGN 417 14.6.3 PERFORMANCE EVALUATION 418 14.6.4 SIMULATION RESULTS 419 14.7 H-INFINITY CONTROL FOR TIME DELAYED SYSTEMS 422 14.8 SMITH PREDICTOR FOR TIME-DELAYED SYSTEMS 423 14.9 PROBLEM FORMULATION USING UNIFIED SMITH PREDICTOR 427 14.10 CASE STUDY 429 14.10.1 CONTROL DESIGN 429 14.10.2 PERFORMANCE EVALUATION 432 14.10.3 SIMULATION RESULTS 432 REFERENCES 436 15 POWER SYSTEM STABILITY CONTROL USING FACTS WITH MULTIPLE OPERATING POINTS 439 15.1 INTRODUCTION 439 15.1.1 LMI BASED TECHNIQUES FOR DAMPING CONTROL DESIGN 439 15.1.2 THE TECHNICAL CHALLENGES O F LMI BASED DAMPING CONTROL DESIGN FOR MULTI-MODEL SYSTEMS 440 15.2 NONLINEAR MATRIX INEQUALITIES FORMULATION O F FACTS STABILITY CONTROL CONSIDERING MULTIPLE OPERATING POINTS 441 15.2.1 MULTI-MODEL SYSTEM 441 15.3 A TWO-STEP DESIGN APPROACH FOR THE OUTPUT FEEDBACK CONTROLLER 442 15.3.1 FIRST STEP: DETERMINATION O F THE VARIABLE K 443 15.3.2 SECOND STEP: DETERMINATION O F VARIABLES A K AND B K 4 4 5 15.4 EXTENSION TO H2 AND H PERFORMANCES 449 15.4.1 FIRST STEP: DETERMINING K FOR MULTI-OBJECTIVE CONTROL 450 15.4.2 SECOND STEP: DETERMINING A K AND B K FOR MULTI-OBJECTIVE CONTROL 451 IMAGE 12 XXVI CONTENTS 15.4.3 PERFORMANCE 453 15.4.4 H 2 PERFORMANCE 454 15.4.5 REMARKS ON THE TWO-STEP CONTROL DESIGN APPROACH 457 15.5 TWO-STEP CONTROL DESIGN APPROACH FOR THE SINGLE-MACHINEINFINITE-BUS 457 15.5.1 SINGLE-MACHINE-INFINITE-BUS (SMIB) 457 15.5.2 POLE PLACEMENT BASED DAMPING CONTROLLER DESIGN USING THE TWO-STEP APPROACH 459 15.5.3 COMPARISON MLMI WITH SLMI USING NONLINEAR SIMULATIONS 462 15.6 TWO-STEP CONTROL DESIGN APPROACH FOR THE MULTI-MACHINE SYSTEM 463 15.6.1 MULTI-MACHINE TEST SYSTEM 463 15.6.2 TWO-STEP DAMPING CONTROLLER DESIGN FOR THE MULTI-MACHINE SYSTEM 464 15.6.3 PERFORMANCE EVALUATION 466 15.6.4 NONLINEAR SIMULATIONS 467 15.6.4.1 CLOSED-LOOP PERFORMANCE UNDER SMALL DISTURBANCES 467 15.6.4.2 CLOSED-LOOP PERFORMANCE UNDER THREE-PHASE FAULT CONDITIONS 468 15.7 ALTERNATIVE TWO-STEP CONTROL DESIGN APPROACH FOR THE MULTI-MACHINE SYSTEM 469 15.7.1 INTRODUCTION O F SCADA/EMS 469 15.7.2 ALTERNATIVE TWO-STEP DAMPING CONTROLLER DESIGN APPROACH 470 15.7.3 NUMERICAL EXAMPLES 471 15.8 SUMMARY 473 REFERENCES 474 16 CONTROL O F A LOOPING DEVICE IN A DISTRIBUTION SYSTEM 477 16.1 OVERVIEW OF A LOOPING DEVICE IN A DISTRIBUTION SYSTEM 477 16.2 LOCAL CONTROL O F LOOPING DEVICE 480 16.2.1 ESTIMATION O F LINE VOLTAGE 480 16.2.2 LOOP POWER FLOW CONTROL 481 16.2.3 REACTIVE POWER CONTROL 482 16.3 APPROXIMATION CONTROL 483 16.3.1 OBJECTIVE FUNCTION AND OPTIMAL CONTROL 483 16.3.2 APPROXIMATION USING THE LEAST-SQUARES METHOD 485 16.4 SIMULATION 486 16.5 DEMONSTRATION 492 16.5.1 FIELD TEST SYSTEM 492 16.5.2 SIMPLE CONTROL FOR TESTING 493 16.5.3 TESTING CONDITIONS 494 16.5.4 TESTING RESULTS 495 REFERENCES 497 IMAGE 13 CONTENTS XXVII 17 POWER ELECTRONIC CONTROL FOR WIND GENERATION SYSTEMS 499 17.1 INTRODUCTION 499 17.2 WT WITH DFIG 501 17.2.1 MODELLING AND CONTROL O F W T WITH DFIG 501 17.2.1.1 SELECTION O F MODELS OF DFIG FOR POWER SYSTEM ANALYSIS 501 17.2.1.2 DECOUPLING CONTROL O F DFIG 502 17.2.1.3 IMPACTS O F WT WITH DFIG ON POWER SYSTEM STABILITY 504 17.2.2 MODEL OF WT WITH DFIG 505 17.2.2.1 MODEL O F DFIG 505 17.2.2.2 MODEL O F DRIVE TRAIN 507 17.2.2.3 MODEL OF THE BACK-TO-BACK CONVERTERS 509 17.2.2.4 ROTOR SIDE CONVERTER CONTROLLER MODEL 509 17.2.2.5 GRID SIDE CONVERTER CONTROLLER MODEL 511 17.2.2.6 PITCH CONTROLLER 511 17.2.2.7 INTERFACING WITH POWER GRID 512 17.3 SMALL SIGNAL STABILITY ANALYSIS O F WT WITH DFIG 512 17.3.1 DYNAMIC MODEL O F WT WITH DFIG 512 17.3.2 SMALL SIGNAL STABILITY ANALYSIS MODEL O F W T WITH DFIG 513 17.3.3 SMALL SIGNAL STABILITY ANALYSIS O F W T WITH DFIG 514 17.3.3.1 SMALL SIGNAL STABILITY ANALYSIS TECHNIQUES [6] [19] 514 17.3.3.2 SMALL SIGNAL STABILITY ANALYSIS WITH PI CONTROLLERS 515 17.3.3.3 SMALL SIGNAL STABILITY ANALYSIS WITH OPTIMIZED PI CONTROLLERS 516 17.3.4 DYNAMIC SIMULATIONS 517 17.3.4.1 FOUR-MACHINE SYSTEM - SMALL DISTURBANCE ....517 17.3.4.2 FOUR-MACHINE SYSTEM - LARGE DISTURBANCE ....519 17.4 MODEL O F WT WITH DDPMG 519 17.4.1 MODEL OF W T WITH DDPMG 520 17.4.1.1 MODEL OF DDPMG 520 17.4.1.2 MODEL O F DRIVE TRAIN 521 17.4.1.3 MODEL OF CONVERTER 522 17.4.1.4 GENERATOR SIDE CONVERTER CONTROLLER MODEL...522 17.4.1.5 GRID SIDE CONVERTER CONTROLLER 524 17.4.1.6 INTERFACING WITH POWER GRID 524 17.4.1.7 DYNAMIC MODEL O F W T WITH DDPMG SYSTEM 525 17.5 SMALL SIGNAL STABILITY ANALYSIS O F W T WITH DDPMG 525 17.5.1 SMALL SIGNAL STABILITY ANALYSIS MODEL 525 17.5.2 SMALL SIGNAL STABILITY ANALYSIS O F W T WITH DDPMG 526 17.5.2.1 SMALL SIGNAL STABILITY ANALYSIS WITH PI CONTROLLER 526 IMAGE 14 XXVIII CONTENTS 17.5.2.2 SMALL SIGNAL STABILITY ANALYSIS O F THE W T WITH DDPMG USING OPTIMIZED PI CONTROLLERS 527 17.5.3 DYNAMIC SIMULATION ON FOUR-MACHINE SYSTEM 528 17.6 NONLINEAR CONTROL O F WIND GENERATION SYSTEMS 529 17.6.1 NONLINEAR CONTROL 529 17.6.2 THIRD-ORDER MODEL O F WT WITH DFIG 530 17.6.3 NONLINEAR CONTROL DESIGN FOR THE WT WITH DFIG 531 17.6.3.1 MODEL EXACT LINEARIZATION O F THE W T WITH DFIG 531 17.6.3.2 NONLINEAR CONTROL DESIGN FOR THE W T WITH DFIG 534 17.6.5 DYNAMIC SIMULATIONS 535 17.6.5.1 CCT ANALYSIS 535 17.6.5.2 DYNAMIC PERFORMANCE 536 17.7 MODELLING O F LARGE WIND FARMS USING SYSTEM DYNAMIC EQUIVALENCE 536 17.7.1 IDENTIFICATION O F COHERENCY GROUPS 537 17.7.2 NETWORK REDUCTION 537 17.7.3 AGGREGATION OF DYNAMIC PARAMETERS 538 17.7.4 DYNAMIC SIMULATIONS 538 17.8 INTERCONNECTION O F LARGE WIND FARMS WITH POWER GRID VIA HVDC LINK 540 17.8.1 DEVELOPMENT IN VSC HVDC TECHNOLOGIES 540 17.8.2 VSC HVDC CONTROL FOR WIND FARM INTERCONNECTION 542 17.8.3 DYNAMIC SIMULATIONS 543 REFERENCES 543 INDEX 547
any_adam_object 1
author Zhang, Xiao-Ping
Rehtanz, Christian
Pal, Bikash 1968-
author_GND (DE-588)130890332
(DE-588)130890340
author_facet Zhang, Xiao-Ping
Rehtanz, Christian
Pal, Bikash 1968-
author_role aut
aut
aut
author_sort Zhang, Xiao-Ping
author_variant x p z xpz
c r cr
b p bp
building Verbundindex
bvnumber BV040301761
classification_rvk ZN 8510
ZN 8520
ctrlnum (OCoLC)794511149
(DE-599)DNB101914291X
dewey-full 621.3192
621.317
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 621 - Applied physics
dewey-raw 621.3192
621.317
dewey-search 621.3192
621.317
dewey-sort 3621.3192
dewey-tens 620 - Engineering and allied operations
discipline Elektrotechnik / Elektronik / Nachrichtentechnik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02665nam a2200625 c 4500</leader><controlfield tag="001">BV040301761</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120810 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120709s2012 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12,N05</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12,A15</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">101914291X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642282409</subfield><subfield code="9">978-3-642-28240-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642282407</subfield><subfield code="9">3-642-28240-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642282416</subfield><subfield code="c">eISBN</subfield><subfield code="9">978-3-642-28241-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783642282409</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)794511149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB101914291X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3192</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.317</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8510</subfield><subfield code="0">(DE-625)157629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8520</subfield><subfield code="0">(DE-625)157630:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xiao-Ping</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130890332</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Flexible AC transmission systems</subfield><subfield code="b">modelling and control</subfield><subfield code="c">Xiao-Ping Zhang ; Christian Rehtanz ; Bikash Pal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 550 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Power systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzregelung</subfield><subfield code="0">(DE-588)4171525-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lastfluss</subfield><subfield code="0">(DE-588)4166833-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzstabilität</subfield><subfield code="g">Elektrische Energietechnik</subfield><subfield code="0">(DE-588)4415875-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">FACTS-Anlage</subfield><subfield code="0">(DE-588)4665808-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Netzbetrieb</subfield><subfield code="0">(DE-588)4171506-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">FACTS-Anlage</subfield><subfield code="0">(DE-588)4665808-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Netzregelung</subfield><subfield code="0">(DE-588)4171525-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Netzbetrieb</subfield><subfield code="0">(DE-588)4171506-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Lastfluss</subfield><subfield code="0">(DE-588)4166833-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Netzstabilität</subfield><subfield code="g">Elektrische Energietechnik</subfield><subfield code="0">(DE-588)4415875-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rehtanz, Christian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Bikash</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130890340</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="t">Flexible AC Transmission Systems: Modelling and Control</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3966031&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=025156779&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025156779</subfield></datafield></record></collection>
id DE-604.BV040301761
illustrated Illustrated
indexdate 2024-12-20T16:12:00Z
institution BVB
isbn 9783642282409
3642282407
9783642282416
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-025156779
oclc_num 794511149
open_access_boolean
owner DE-83
DE-29T
owner_facet DE-83
DE-29T
physical XXVIII, 550 S. Ill., graph. Darst.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher Springer
record_format marc
series2 Power systems
spellingShingle Zhang, Xiao-Ping
Rehtanz, Christian
Pal, Bikash 1968-
Flexible AC transmission systems modelling and control
Netzregelung (DE-588)4171525-1 gnd
Lastfluss (DE-588)4166833-9 gnd
Netzstabilität Elektrische Energietechnik (DE-588)4415875-0 gnd
FACTS-Anlage (DE-588)4665808-7 gnd
Netzbetrieb (DE-588)4171506-8 gnd
Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd
subject_GND (DE-588)4171525-1
(DE-588)4166833-9
(DE-588)4415875-0
(DE-588)4665808-7
(DE-588)4171506-8
(DE-588)4121178-9
title Flexible AC transmission systems modelling and control
title_auth Flexible AC transmission systems modelling and control
title_exact_search Flexible AC transmission systems modelling and control
title_full Flexible AC transmission systems modelling and control Xiao-Ping Zhang ; Christian Rehtanz ; Bikash Pal
title_fullStr Flexible AC transmission systems modelling and control Xiao-Ping Zhang ; Christian Rehtanz ; Bikash Pal
title_full_unstemmed Flexible AC transmission systems modelling and control Xiao-Ping Zhang ; Christian Rehtanz ; Bikash Pal
title_short Flexible AC transmission systems
title_sort flexible ac transmission systems modelling and control
title_sub modelling and control
topic Netzregelung (DE-588)4171525-1 gnd
Lastfluss (DE-588)4166833-9 gnd
Netzstabilität Elektrische Energietechnik (DE-588)4415875-0 gnd
FACTS-Anlage (DE-588)4665808-7 gnd
Netzbetrieb (DE-588)4171506-8 gnd
Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd
topic_facet Netzregelung
Lastfluss
Netzstabilität Elektrische Energietechnik
FACTS-Anlage
Netzbetrieb
Elektrizitätsversorgungsnetz
url http://deposit.dnb.de/cgi-bin/dokserv?id=3966031&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=025156779&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT zhangxiaoping flexibleactransmissionsystemsmodellingandcontrol
AT rehtanzchristian flexibleactransmissionsystemsmodellingandcontrol
AT palbikash flexibleactransmissionsystemsmodellingandcontrol
  • Availability

‌

Order via interlibrary loan
Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline