Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Analytic number theory
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Koninck, Jean-Marie de 1948- (VerfasserIn), Luca, Florian 1969- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Providence, RI American Math. Soc. 2012
Schriftenreihe:Graduate studies in mathematics 134
Schlagwörter:
Number theory
Euclidean algorithm
Integrals
Number theory > Elementary number theory > Multiplicative structure; Euclidean algorithm; greatest common divisors
Number theory > Elementary number theory > Primes
Number theory > Sequences and sets > Density, gaps, topology
Number theory > Sequences and sets > Fibonacci and Lucas numbers and polynomials and generalizations
Number theory > Probabilistic theory: distribution modulo 1; metric theory of algorithms > Arithmetic functions
Number theory > Multiplicative number theory > Distribution of primes
Number theory > Multiplicative number theory > Primes in progressions
Number theory > Multiplicative number theory > Sieves
Number theory > Multiplicative number theory > Asymptotic results on arithmetic functions
Number theory > Multiplicative number theory > Distribution functions associated with additive and positive multiplicative functions
Analytische Zahlentheorie
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024984372&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XVIII, 414 S.
ISBN:9780821875773
Internformat

MARC

LEADER 00000nam a2200000 cb4500
001 BV040127117
003 DE-604
005 20210118
007 t|
008 120509s2012 xxu |||| 00||| eng d
010 |a 2011051431 
020 |a 9780821875773  |c alk. paper  |9 978-0-8218-7577-3 
035 |a (OCoLC)795890531 
035 |a (DE-599)BVBBV040127117 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-20  |a DE-188  |a DE-384  |a DE-824  |a DE-19  |a DE-355  |a DE-83  |a DE-11 
050 0 |a QA241 
082 0 |a 512.7/4 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a 11A41  |2 msc 
084 |a 11N05  |2 msc 
084 |a 11A05  |2 msc 
100 1 |a Koninck, Jean-Marie de  |d 1948-  |e Verfasser  |0 (DE-588)141191112  |4 aut 
245 1 0 |a Analytic number theory  |b exploring the anatomy of integers  |c Jean-Marie De Koninck ; Florian Luca 
264 1 |a Providence, RI  |b American Math. Soc.  |c 2012 
300 |a XVIII, 414 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate studies in mathematics  |v 134 
650 4 |a Number theory 
650 4 |a Euclidean algorithm 
650 4 |a Integrals 
650 7 |a Number theory -- Elementary number theory -- Multiplicative structure; Euclidean algorithm; greatest common divisors  |2 msc 
650 7 |a Number theory -- Elementary number theory -- Primes  |2 msc 
650 7 |a Number theory -- Sequences and sets -- Density, gaps, topology  |2 msc 
650 7 |a Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations  |2 msc 
650 7 |a Number theory -- Probabilistic theory: distribution modulo 1; metric theory of algorithms -- Arithmetic functions  |2 msc 
650 7 |a Number theory -- Multiplicative number theory -- Distribution of primes  |2 msc 
650 7 |a Number theory -- Multiplicative number theory -- Primes in progressions  |2 msc 
650 7 |a Number theory -- Multiplicative number theory -- Sieves  |2 msc 
650 7 |a Number theory -- Multiplicative number theory -- Asymptotic results on arithmetic functions  |2 msc 
650 7 |a Number theory -- Multiplicative number theory -- Distribution functions associated with additive and positive multiplicative functions  |2 msc 
650 0 7 |a Analytische Zahlentheorie  |0 (DE-588)4001870-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Analytische Zahlentheorie  |0 (DE-588)4001870-2  |D s 
689 0 |5 DE-604 
700 1 |a Luca, Florian  |d 1969-  |e Verfasser  |0 (DE-588)1025704193  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-0-8218-8541-3 
830 0 |a Graduate studies in mathematics  |v 134  |w (DE-604)BV009739289  |9 134 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024984372&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024984372 

Datensatz im Suchindex

DE-BY-UBR_call_number 80/SK 180 K82 A5
DE-BY-UBR_katkey 5200791
DE-BY-UBR_location UB Lesesaal Mathematik
DE-BY-UBR_media_number 069037299007
_version_ 1835109435791376384
adam_text Contents Preface ix Notation xiii Frequently Used Functions xvii Chapter 1. Preliminary Notions 1 §1.1. Approximating a sum by an integral 1 §1.2. The Euler-MacLaurin formula 2 §1.3. The Abel summation formula 5 §1.4. Stieltjes integrals 7 §1.5. Slowly oscillating functions 8 §1.6. Combinatorial results 9 §1.7. The Chinese Remainder Theorem 10 §1.8. The density of a set of integers 11 §1.9. The Stirling formula 11 §1.10. Basic inequalities 13 Problems on Chapter 1 15 Chapter 2. Prime Numbers and Their Properties 19 §2.1. Prime numbers and their polynomial representations 19 §2.2. There exist infinitely many primes 21 §2.3. A first glimpse at the size of π (ж) 21 §2.4. Fermat numbers 22 §2.5. A better lower bound for π(χ) 24 iii iv Contents §2.6. The Chebyshev estimates 24 §2.7. The Bertrand Postulate 29 §2.8. The distance between consecutive primes 31 §2.9. Mersenne primes 32 §2.10. Conjectures on the distribution of prime numbers 33 Problems on Chapter 2 36 Chapter 3. The Riemann Zeta Function 39 §3.1. The definition of the Riemann Zeta Function 39 §3.2. Extending the Zeta Function to the half-plane σ > 0 40 §3.3. The derivative of the Riemann Zeta Function 41 §3.4. The zeros of the Zeta Function 43 §3.5. Euler s estimate ζ (2) = тг2/6 45 Problems on Chapter 3 48 Chapter 4. Setting the Stage for the Proof of the Prime Number Theorem 51 §4.1. Key functions related to the Prime Number Theorem 51 §4.2. A closer analysis of the functions θ(χ) and ψ(χ) 52 §4.3. Useful estimates 53 §4.4. The Mertens estimate 55 §4.5. The Möbius function 56 §4.6. The divisor function 58 Problems on Chapter 4 60 Chapter 5. The Proof of the Prime Number Theorem 63 §5.1. A theorem of D. J. Newman 63 §5.2. An application of Newman s theorem 65 §5.3. The proof of the Prime Number Theorem 66 §5.4. A review of the proof of the Prime Number Theorem 69 §5.5. The Riemann Hypothesis and the Prime Number Theorem 70 §5.6. Useful estimates involving primes 71 §5.7. Elementary proofs of the Prime Number Theorem 72 Problems on Chapter 5 72 Chapter 6. The Global Behavior of Arithmetic Functions 75 §6.1. Dirichlet series and arithmetic functions 75 §6.2. The uniqueness of representation of a Dirichlet series 77 Contents §6.3. Multiplicative functions 79 §6.4. Generating functions and Dirichlet products 81 §6.5. Wintner s theorem 82 §6.6. Additive functions 85 §6.7. The average orders of ω(η) and Ω(η) 86 §6.8. The average order of an additive function 87 §6.9. The Erdős- Wintner theorem 88 Problems on Chapter 6 89 Chapter 7. The Local Behavior of Arithmetic Functions 93 §7.1. The normal order of an arithmetic function 93 §7.2. The Turán-Kubilius inequality 94 §7.3. Maximal order of the divisor function 99 §7.4. An upper bound for d(n) 101 §7.5. Asymptotic densities 103 §7.6. Perfect numbers 106 §7.7. Sierpiński, Riesel, and Romanov 106 §7.8. Some open problems of an elementary nature 108 Problems on Chapter 7 109 Chapter 8. The Fascinating Euler Function 115 §8.1. The Euler function 115 §8.2. Elementary properties of the Euler function 117 §8.3. The average order of the Euler function 118 §8.4. When is φ(η)σ(η) a square? 119 §8.5. The distribution of the values of φ(η)/η 121 §8.6. The local behavior of the Euler function 122 Problems on Chapter 8 124 Chapter 9. Smooth Numbers 127 §9.1. Notation 127 §9.2. The smallest prime factor of an integer 127 §9.3. The largest prime factor of an integer 131 §9.4. The Rankin method 137 §9.5. An application to pseudoprimes 141 §9.6. The geometric method 145 §9.7. The best known estimates on Ф(ж, у) 146 vi Contents §9.8. The Dickman function 147 §9.9. Consecutive smooth numbers 149 Problems on Chapter 9 150 Chapter 10. The Hardy-Ramanujan and Landau Theorems 157 §10.1. The Hardy-Ramanujan inequality 157 §10.2. Landau s theorem 159 Problems on Chapter 10 164 Chapter 11. The abc Conjecture and Some of Its Applications 167 §11.1. The abc conjecture 167 §11.2. The relevance of the condition ε > 0 168 §11.3. The Generalized Fermat Equation 171 §11.4. Consecutive powerful numbers 172 §11.5. Sums of ^-powerful numbers 172 §11.6. The Erdős-Woods conjecture 173 §11.7. A problem of Gandhi 174 §11.8. The k-abc conjecture 175 Problems on Chapter 11 176 Chapter 12. Sieve Methods 179 §12.1. The sieve of Eratosthenes 179 §12.2. The Brun sieve 180 §12.3. Twin primes 184 §12.4. The Brun combinatorial sieve 187 §12.5. A Chebyshev type estimate 187 §12.6. The Brun-Titchmarsh theorem 188 §12.7. Twin primes revisited 190 §12.8. Smooth shifted primes 191 §12.9. The Goldbach conjecture 192 §12.10. The Schnirelman theorem 194 §12.11. The Selberg sieve 198 §12.12. The Brun-Titchmarsh theorem from the Selberg sieve 201 §12.13. The Large sieve 202 §12.14. Quasi-squares 203 §12.15. The smallest quadratic nonresidue modulo ρ 204 Problems on Chapter 12 206 Contents vii Chapter 13. Prime Numbers in Arithmetic Progression 217 §13.1. Quadratic residues 217 §13.2. The proof of the Quadratic Reciprocity Law 220 §13.3. Primes in arithmetic progressions with small moduli 222 §13.4. The Primitive Divisor theorem 224 §13.5. Comments on the Primitive Divisor theorem 227 Problems on Chapter 13 228 Chapter 14. Characters and the Dirichlet Theorem 233 §14.1. Primitive roots 233 §14.2. Characters 235 §14.3. Theorems about characters 236 §14.4. L-series 240 §14.5. L(l,x) is finite if χ is a non-principal character 242 §14.6. The nonvanishing of L(l,x): first step 243 §14.7. The completion of the proof of the Dirichlet theorem 244 Problems on Chapter 14 247 Chapter 15. Selected Applications of Primes in Arithmetic Progression 251 §15.1. Known results about primes in arithmetical progressions 251 §15.2. Some Diophantine applications 254 §15.3. Primes ρ with ρ — 1 squarefree 257 §15.4. More applications of primes in arithmetic progressions 259 §15.5. Probabilistic applications 261 Problems on Chapter 15 263 Chapter 16. The Index of Composition of an Integer 267 §16.1. Introduction 267 §16.2. Elementary results 268 §16.3. Mean values of A and I/A 270 §16.4. Local behavior of A(n) 273 §16.5. Distribution function of λ(η) 275 §16.6. Probabilistic results 276 Problems on Chapter 16 279 Appendix: Basic Complex Analysis Theory 281 §17.1. Basic definitions 281 viii Contents §17.2. Infinite products 283 §17.3. The derivative of a function of a complex variable 284 §17.4. The integral of a function along a path 285 §17.5. The Cauchy theorem 287 §17.6. The Cauchy integral formula 289 Solutions to Even-Numbered Problems 291 Solutions to problems from Chapter 1 291 Solutions to problems from Chapter 2 295 Solutions to problems from Chapter 3 303 Solutions to problems from Chapter 4 309 Solutions to problems from Chapter 5 312 Solutions to problems from Chapter б 318 Solutions to problems from Chapter 7 321 Solutions to problems from Chapter 8 334 Solutions to problems from Chapter 9 338 Solutions to problems from Chapter 10 351 Solutions to problems from Chapter 11 353 Solutions to problems from Chapter 12 356 Solutions to problems from Chapter 13 377 Solutions to problems from Chapter 14 384 Solutions to problems from Chapter 15 392 Solutions to problems from Chapter 16 401 Bibliography 405 Index 413
any_adam_object 1
author Koninck, Jean-Marie de 1948-
Luca, Florian 1969-
author_GND (DE-588)141191112
(DE-588)1025704193
author_facet Koninck, Jean-Marie de 1948-
Luca, Florian 1969-
author_role aut
aut
author_sort Koninck, Jean-Marie de 1948-
author_variant j m d k jmd jmdk
f l fl
building Verbundindex
bvnumber BV040127117
callnumber-first Q - Science
callnumber-label QA241
callnumber-raw QA241
callnumber-search QA241
callnumber-sort QA 3241
callnumber-subject QA - Mathematics
classification_rvk SK 180
ctrlnum (OCoLC)795890531
(DE-599)BVBBV040127117
dewey-full 512.7/4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7/4
dewey-search 512.7/4
dewey-sort 3512.7 14
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02948nam a2200601 cb4500</leader><controlfield tag="001">BV040127117</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210118 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">120509s2012 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2011051431</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821875773</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-8218-7577-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)795890531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040127117</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/4</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11A41</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11N05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koninck, Jean-Marie de</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141191112</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytic number theory</subfield><subfield code="b">exploring the anatomy of integers</subfield><subfield code="c">Jean-Marie De Koninck ; Florian Luca</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 414 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">134</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euclidean algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Elementary number theory -- Multiplicative structure; Euclidean algorithm; greatest common divisors</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Elementary number theory -- Primes</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Sequences and sets -- Density, gaps, topology</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Probabilistic theory: distribution modulo 1; metric theory of algorithms -- Arithmetic functions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Multiplicative number theory -- Distribution of primes</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Multiplicative number theory -- Primes in progressions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Multiplicative number theory -- Sieves</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Multiplicative number theory -- Asymptotic results on arithmetic functions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory -- Multiplicative number theory -- Distribution functions associated with additive and positive multiplicative functions</subfield><subfield code="2">msc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analytische Zahlentheorie</subfield><subfield code="0">(DE-588)4001870-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luca, Florian</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1025704193</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-8218-8541-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate studies in mathematics</subfield><subfield code="v">134</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">134</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024984372&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024984372</subfield></datafield></record></collection>
id DE-604.BV040127117
illustrated Not Illustrated
indexdate 2024-12-20T16:08:43Z
institution BVB
isbn 9780821875773
language English
lccn 2011051431
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024984372
oclc_num 795890531
open_access_boolean
owner DE-20
DE-188
DE-384
DE-824
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-83
DE-11
owner_facet DE-20
DE-188
DE-384
DE-824
DE-19
DE-BY-UBM
DE-355
DE-BY-UBR
DE-83
DE-11
physical XVIII, 414 S.
publishDate 2012
publishDateSearch 2012
publishDateSort 2012
publisher American Math. Soc.
record_format marc
series Graduate studies in mathematics
series2 Graduate studies in mathematics
spellingShingle Koninck, Jean-Marie de 1948-
Luca, Florian 1969-
Analytic number theory exploring the anatomy of integers
Graduate studies in mathematics
Number theory
Euclidean algorithm
Integrals
Number theory -- Elementary number theory -- Multiplicative structure; Euclidean algorithm; greatest common divisors msc
Number theory -- Elementary number theory -- Primes msc
Number theory -- Sequences and sets -- Density, gaps, topology msc
Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations msc
Number theory -- Probabilistic theory: distribution modulo 1; metric theory of algorithms -- Arithmetic functions msc
Number theory -- Multiplicative number theory -- Distribution of primes msc
Number theory -- Multiplicative number theory -- Primes in progressions msc
Number theory -- Multiplicative number theory -- Sieves msc
Number theory -- Multiplicative number theory -- Asymptotic results on arithmetic functions msc
Number theory -- Multiplicative number theory -- Distribution functions associated with additive and positive multiplicative functions msc
Analytische Zahlentheorie (DE-588)4001870-2 gnd
subject_GND (DE-588)4001870-2
title Analytic number theory exploring the anatomy of integers
title_auth Analytic number theory exploring the anatomy of integers
title_exact_search Analytic number theory exploring the anatomy of integers
title_full Analytic number theory exploring the anatomy of integers Jean-Marie De Koninck ; Florian Luca
title_fullStr Analytic number theory exploring the anatomy of integers Jean-Marie De Koninck ; Florian Luca
title_full_unstemmed Analytic number theory exploring the anatomy of integers Jean-Marie De Koninck ; Florian Luca
title_short Analytic number theory
title_sort analytic number theory exploring the anatomy of integers
title_sub exploring the anatomy of integers
topic Number theory
Euclidean algorithm
Integrals
Number theory -- Elementary number theory -- Multiplicative structure; Euclidean algorithm; greatest common divisors msc
Number theory -- Elementary number theory -- Primes msc
Number theory -- Sequences and sets -- Density, gaps, topology msc
Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations msc
Number theory -- Probabilistic theory: distribution modulo 1; metric theory of algorithms -- Arithmetic functions msc
Number theory -- Multiplicative number theory -- Distribution of primes msc
Number theory -- Multiplicative number theory -- Primes in progressions msc
Number theory -- Multiplicative number theory -- Sieves msc
Number theory -- Multiplicative number theory -- Asymptotic results on arithmetic functions msc
Number theory -- Multiplicative number theory -- Distribution functions associated with additive and positive multiplicative functions msc
Analytische Zahlentheorie (DE-588)4001870-2 gnd
topic_facet Number theory
Euclidean algorithm
Integrals
Number theory -- Elementary number theory -- Multiplicative structure; Euclidean algorithm; greatest common divisors
Number theory -- Elementary number theory -- Primes
Number theory -- Sequences and sets -- Density, gaps, topology
Number theory -- Sequences and sets -- Fibonacci and Lucas numbers and polynomials and generalizations
Number theory -- Probabilistic theory: distribution modulo 1; metric theory of algorithms -- Arithmetic functions
Number theory -- Multiplicative number theory -- Distribution of primes
Number theory -- Multiplicative number theory -- Primes in progressions
Number theory -- Multiplicative number theory -- Sieves
Number theory -- Multiplicative number theory -- Asymptotic results on arithmetic functions
Number theory -- Multiplicative number theory -- Distribution functions associated with additive and positive multiplicative functions
Analytische Zahlentheorie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024984372&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009739289
work_keys_str_mv AT koninckjeanmariede analyticnumbertheoryexploringtheanatomyofintegers
AT lucaflorian analyticnumbertheoryexploringtheanatomyofintegers
  • Verfügbarkeit

‌

Per Fernleihe bestellen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt