Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Riemannian geometry of contact...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Riemannian geometry of contact and symplectic manifolds:
Saved in:
Bibliographic Details
Main Author: Blair, David E. (Author)
Format: Electronic eBook
Language:English
Published: New York, NY Springer 2010
Edition:2. ed.
Series:Progress in mathematics 203
Subjects:
Mathematik
Global differential geometry
Cell aggregation / Mathematics
Mathematics
Symplektische Mannigfaltigkeit
Kontaktmannigfaltigkeit
Riemannsche Geometrie
Links:https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
https://doi.org/10.1007/978-0-8176-4959-3
http://swbplus.bsz-bw.de/bsz329518151inh.htm
Physical Description:1 Online-Ressource
ISBN:9780817649593
DOI:10.1007/978-0-8176-4959-3
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV039607077
003 DE-604
005 20120910
007 cr|uuu---uuuuu
008 110928s2010 xx o|||| 00||| eng d
020 |a 9780817649593  |c Online  |9 978-0-8176-4959-3 
024 7 |a 10.1007/978-0-8176-4959-3  |2 doi 
035 |a (OCoLC)663863263 
035 |a (DE-599)BSZ329518151 
040 |a DE-604  |b ger 
041 0 |a eng 
049 |a DE-634  |a DE-703  |a DE-29  |a DE-91  |a DE-19  |a DE-20  |a DE-384  |a DE-83  |a DE-739 
082 0 |a 516.36 
084 |a SA 1055  |0 (DE-625)142588:  |2 rvk 
084 |a SK 370  |0 (DE-625)143234:  |2 rvk 
084 |a MAT 000  |2 stub 
100 1 |a Blair, David E.  |e Verfasser  |4 aut 
245 1 0 |a Riemannian geometry of contact and symplectic manifolds  |c David E. Blair 
250 |a 2. ed. 
264 1 |a New York, NY  |b Springer  |c 2010 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Progress in mathematics  |v 203 
650 4 |a Mathematik 
650 4 |a Global differential geometry 
650 4 |a Cell aggregation / Mathematics 
650 4 |a Mathematics 
650 0 7 |a Symplektische Mannigfaltigkeit  |0 (DE-588)4290704-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Kontaktmannigfaltigkeit  |0 (DE-588)4669522-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |D s 
689 0 1 |a Symplektische Mannigfaltigkeit  |0 (DE-588)4290704-4  |D s 
689 0 2 |a Kontaktmannigfaltigkeit  |0 (DE-588)4669522-9  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-8176-4958-6 
830 0 |a Progress in mathematics  |v 203  |w (DE-604)BV035421267  |9 203 
856 4 0 |u https://doi.org/10.1007/978-0-8176-4959-3  |x Verlag  |3 Volltext 
856 4 2 |m V:DE-576;X:springer  |q application/pdf  |u http://swbplus.bsz-bw.de/bsz329518151inh.htm  |3 Inhaltsverzeichnis 
912 |a ZDB-2-SMA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024457824 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-634  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-91  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-384  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-19  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-703  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-20  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-29  |p ZDB-2-SMA  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1007/978-0-8176-4959-3  |l DE-739  |p ZDB-2-SMA  |x Verlag  |3 Volltext 

Record in the Search Index

DE-BY-TUM_katkey 1962952
_version_ 1821930756676517890
any_adam_object
author Blair, David E.
author_facet Blair, David E.
author_role aut
author_sort Blair, David E.
author_variant d e b de deb
building Verbundindex
bvnumber BV039607077
classification_rvk SA 1055
SK 370
classification_tum MAT 000
collection ZDB-2-SMA
ctrlnum (OCoLC)663863263
(DE-599)BSZ329518151
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-0-8176-4959-3
edition 2. ed.
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02758nam a2200625 cb4500</leader><controlfield tag="001">BV039607077</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120910 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">110928s2010 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817649593</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-4959-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-0-8176-4959-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)663863263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ329518151</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SA 1055</subfield><subfield code="0">(DE-625)142588:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blair, David E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian geometry of contact and symplectic manifolds</subfield><subfield code="c">David E. Blair</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">203</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kontaktmannigfaltigkeit</subfield><subfield code="0">(DE-588)4669522-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-8176-4958-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">203</subfield><subfield code="w">(DE-604)BV035421267</subfield><subfield code="9">203</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">V:DE-576;X:springer</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://swbplus.bsz-bw.de/bsz329518151inh.htm</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024457824</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-8176-4959-3</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV039607077
illustrated Not Illustrated
indexdate 2024-12-20T15:58:23Z
institution BVB
isbn 9780817649593
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024457824
oclc_num 663863263
open_access_boolean
owner DE-634
DE-703
DE-29
DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-20
DE-384
DE-83
DE-739
owner_facet DE-634
DE-703
DE-29
DE-91
DE-BY-TUM
DE-19
DE-BY-UBM
DE-20
DE-384
DE-83
DE-739
physical 1 Online-Ressource
psigel ZDB-2-SMA
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Springer
record_format marc
series Progress in mathematics
series2 Progress in mathematics
spellingShingle Blair, David E.
Riemannian geometry of contact and symplectic manifolds
Progress in mathematics
Mathematik
Global differential geometry
Cell aggregation / Mathematics
Mathematics
Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd
Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd
Riemannsche Geometrie (DE-588)4128462-8 gnd
subject_GND (DE-588)4290704-4
(DE-588)4669522-9
(DE-588)4128462-8
title Riemannian geometry of contact and symplectic manifolds
title_auth Riemannian geometry of contact and symplectic manifolds
title_exact_search Riemannian geometry of contact and symplectic manifolds
title_full Riemannian geometry of contact and symplectic manifolds David E. Blair
title_fullStr Riemannian geometry of contact and symplectic manifolds David E. Blair
title_full_unstemmed Riemannian geometry of contact and symplectic manifolds David E. Blair
title_short Riemannian geometry of contact and symplectic manifolds
title_sort riemannian geometry of contact and symplectic manifolds
topic Mathematik
Global differential geometry
Cell aggregation / Mathematics
Mathematics
Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd
Kontaktmannigfaltigkeit (DE-588)4669522-9 gnd
Riemannsche Geometrie (DE-588)4128462-8 gnd
topic_facet Mathematik
Global differential geometry
Cell aggregation / Mathematics
Mathematics
Symplektische Mannigfaltigkeit
Kontaktmannigfaltigkeit
Riemannsche Geometrie
url https://doi.org/10.1007/978-0-8176-4959-3
http://swbplus.bsz-bw.de/bsz329518151inh.htm
volume_link (DE-604)BV035421267
work_keys_str_mv AT blairdavide riemanniangeometryofcontactandsymplecticmanifolds
  • Availability
Order (Login required)
Read online
Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline