Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Parallel genetic algorithms
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Main Authors: Luque, Gabriel (Author), Alba, Enrique (Author)
Format: Book
Language:English
Published: Berlin ; Heidelberg Springer [2011]
Series:Studies in computational intelligence 367
Subjects:
Genetischer Algorithmus
Paralleler Algorithmus
Links:http://deposit.dnb.de/cgi-bin/dokserv?id=3831164&prov=M&dok_var=1&dok_ext=htm
http://deposit.dnb.de/cgi-bin/dokserv?id=4389967&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000005&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA
Item Description:Literaturangaben
Physical Description:XII, 171 Seiten Illustrationen, Diagramme
ISBN:9783642220838
9783642268687
3642220835
3642268684
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV039160680
003 DE-604
005 20180221
007 t|
008 110727s2011 xx a||| |||| 00||| eng d
016 7 |a 1012138763  |2 DE-101 
020 |a 9783642220838  |9 978-3-642-22083-8 
020 |a 9783642268687  |c Pb. : EUR 123.04 (DE) (freier Pr.), EUR 126.49 (AT) (freier Pr.), sfr 153.50 (freier Pr.)  |9 978-3-642-26868-7 
020 |a 3642220835  |9 3-642-22083-5 
020 |a 3642268684  |9 3-642-26868-4 
028 5 2 |a Best.-Nr.: 86026960 
035 |a (OCoLC)746282544 
035 |a (DE-599)DNB1012138763 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-11  |a DE-739 
082 0 |a 519.62  |2 22/ger 
084 |a ST 300  |0 (DE-625)143650:  |2 rvk 
084 |a 510  |2 sdnb 
084 |a 620  |2 sdnb 
084 |a 004  |2 sdnb 
100 1 |a Luque, Gabriel  |e Verfasser  |4 aut 
245 1 0 |a Parallel genetic algorithms  |b theory and real world applications  |c Gabriel Luque and Enrique Alba 
264 1 |a Berlin ; Heidelberg  |b Springer  |c [2011] 
300 |a XII, 171 Seiten  |b Illustrationen, Diagramme 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Studies in computational intelligence  |v 367 
500 |a Literaturangaben 
650 0 7 |a Genetischer Algorithmus  |0 (DE-588)4265092-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Paralleler Algorithmus  |0 (DE-588)4193615-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Genetischer Algorithmus  |0 (DE-588)4265092-6  |D s 
689 0 1 |a Paralleler Algorithmus  |0 (DE-588)4193615-2  |D s 
689 0 |5 DE-604 
700 1 |a Alba, Enrique  |e Verfasser  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-642-22084-5 
830 0 |a Studies in computational intelligence  |v 367  |w (DE-604)BV020822171  |9 367 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3831164&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m X:MVB  |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=4389967&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m DNB Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m Digitalisierung UB Passau - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000005&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-024178185 

Record in the Search Index

_version_ 1819339685642633216
adam_text IMAGE 1 CONTENTS PART I: INTRODUCTION 1 INTRODUCTION 3 1.1 OPTIMIZATION 4 1.2 METAHEURITICS 5 1.3 EVOLUTIONARY ALGORITHMS 7 1.4 DECENTRALIZED GENETIC ALGORITHMS 10 1.5 CONCLUSIONS 12 2 PARALLEL MODELS FOR GENETIC ALGORITHMS 15 2.1 PANMICTIC GENETIC ALGORITHMS 17 2.2 STRUCTURED GENETIC ALGORITHMS 18 2.3 PARALLEL GENETIC ALGORITHMS 19 2.3.1 PARALLEL MODELS 20 2.3.2 A BRIEF SURVEY ON PARALLEL GAS 23 2.3.3 NEW TRENDS IN PGAS 25 2.4 FIRST EXPERIMENTAL RESULTS 26 2.4.1 MAXSAT PROBLEM 26 2.4.2 ANALYSIS OF RESULTS 27 2.5 SUMMARY 29 3 BEST PRACTICES IN REPORTING RESULTS WITH PARALLEL GENETIC ALGORITHMS 31 3.1 PARALLEL PERFORMANCE MEASURES 32 3.1.1 SPEEDUP 32 3.1.2 OTHER PARALLEL MEASURES 36 3.2 HOW TO REPORT RESULTS IN PGAS 37 3.2.1 EXPERIMENTATION 37 3.2.2 MEASURING PERFORMANCE 39 3.2.3 QUALITY OF THE SOLUTIONS 39 3.2.4 COMPUTATIONAL EFFORT 40 BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1012138763 DIGITALISIERT DURCH IMAGE 2 X CONTENTS 3.2.5 STATISTICAL ANALYSIS 41 3.2.6 REPORTING RESULTS 42 3.3 INADEQUATE UTILIZATION OF PARALLEL METRICS 43 3.4 ILLUSTRATING THE INFLUENCE OF MEASURES 45 3.4.1 EXAMPLE 1: ON THE ABSENCE OF INFORMATION 46 3.4.2 EXAMPLE 2: RELAXING THE OPTIMUM HELPS 47 3.4.3 EXAMPLE 3: CLEAR CONCLUSIONS DO EXIST 48 3.4.4 EXAMPLE 4: MEANINGFULNESS DOES NOT MEAN CLEAR SUPERIORITY 48 3.4.5 EXAMPLE 5: SPEEDUP: AVOID COMPARING APPLES AGAINST ORANGES 49 3.4.6 EXAMPLE 6: A PREDEFINED EFFORT COULD HINDER CLEAR CONCLUSIONS 50 3.5 CONCLUSIONS 51 PART II: CHARACTERIZATION OF PARALLEL GENETIC ALGORITHMS 4 THEORETICAL MODELS OF SELECTION PRESSURE FOR DISTRIBUTED GAS 55 4.1 EXISTING THEORETICAL MODELS 57 4.1.1 THE LOGISTIC MODEL 57 4.1.2 THE HYPERGRAPH MODEL 57 4.1.3 OTHER MODELS 58 4.2 ANALYZED MODELS 59 4.3 EFFECTS OF THE MIGRATION POLICY ON THE ACTUAL GROWTH CURVES 60 4.3.1 PARAMETERS 61 4.3.2 MIGRATION TOPOLOGY 61 4.3.3 MIGRATION FREQUENCY 63 4.3.4 MIGRATION RATE 64 4.3.5 ANALYSIS OF THE RESULTS 65 4.4 TAKEOVER TIME ANALYSIS 68 4.5 CONCLUSIONS 71 PART III: APPLICATIONS OF PARALLEL GENETIC ALGORITHMS 5 NATURAL LANGUAGE TAGGING WITH PARALLEL GENETIC ALGORITHMS 75 5.1 STATISTICAL TAGGING 77 5.2 AUTOMATIC TAGGING WITH METAHEURISTICS 79 5.2.1 GENETIC ALGORITHM 79 5.2.2 CHC ALGORITHM 80 5.2.3 SIMULATED ANNEALING 80 5.2.4 PARALLEL VERSIONS 80 IMAGE 3 CONTENTS XI 5.3 ALGORITHM DECISIONS: REPRESENTATION, EVALUATION, AND OPERATORS 81 5.3.1 INDIVIDUALS 81 5.3.2 FITNESS EVALUATION 82 5.3.3 GENETIC OPERATORS 82 5.4 EXPERIMENTAL DESIGN AND ANALYSIS 83 5.5 CONCLUSIONS 89 DESIGN OF COMBINATIONAL LOGIC CIRCUITS 91 6.1 PROBLEM DEFINITION 92 6.2 ENCODING SOLUTIONS INTO STRINGS 94 6.3 RELATED WORKS 97 6.4 SEQUENTIAL, PARALLEL, AND HYBRID APPROACHES 97 6.5 COMPUTATIONAL EXPERIMENTS AND ANALYSIS OF THEIR RESULTS 102 6.5.1 CASE STUDY 1: SASAO 104 6.5.2 CASE STUDY 2: CATHERINE 106 6.5.3 CASE STUDY 3: KATZ 1 108 6.5.4 CASE STUDY 4: 2-BIT MULTIPLIER 109 6.5.5 CASE STUDY 5: KATZ 2 110 6.6 OVERALL DISCUSSION 113 6.7 CONCLUSIONS AND FUTURE WORK 114 PARALLEL GENETIC ALGORITHM FOR THE WORKFORCE PLANNING PROBLEM 115 7.1 THE WORKFORCE PLANNING PROBLEM 116 7.2 DESIGN OF A GENETIC ALGORITHM 118 7.2.1 SOLUTION ENCODING 118 7.2.2 EVALUATION THE QUALITY OF A SOLUTION 119 7.2.3 REPAIRING/IMPROVING OPERATOR 120 7.2.4 RECOMBINATION OPERATOR 120 7.2.5 MUTATION OPERATOR 122 7.2.6 THE PROPOSED PARALLEL GA 122 7.3 SCATTER SEARCH 123 7.3.1 SEEDING THE INITIAL POPULATION 124 7.3.2 IMPROVEMENT METHOD 124 7.3.3 PARALLEL SS 125 7.4 COMPUTATIONAL EXPERIMENTS AND ANALYSIS OF RESULTS 125 7.4.1 PROBLEM INSTANCES 126 7.4.2 RESULTS: WORKFORCE PLANNING PERFORMANCE 126 7.4.3 RESULTS: COMPUTATIONAL TIMES 129 7.4.4 A PARALLEL HYBRID GA 132 7.5 CONCLUSIONS 134 IMAGE 4 XII CONTENTS 8 PARALLEL GAS IN BIOINFORMATICS: ASSEMBLING D NA FRAGMENTS 135 8.1 THE WORK OF A DNA FRAGMENT ASSEMBLER 136 8.1.1 DNA SEQUENCING PROCESS 136 8.2 RELATED LITERATURE 139 8.3 THE PGA DNA ASSEMBLER 140 8.3.1 SOLUTION ENCODING 140 8.3.2 SOLUTION EVALUATION 140 8.3.3 GENETIC OPERATORS 141 8.3.4 THE PARALLEL APPROACH 142 8.4 EXPERIMENTAL VALIDATION 143 8.4.1 TARGET PROBLEM INSTANCES 143 8.4.2 PARAMETERIZATION 144 8.4.3 ANALYSIS OF RESULTS 144 8.5 CONCLUSIONS 147 A THE MALLBA LIBRARY 149 A.I SKELETON INTERFACES 151 A.2 COMMUNICATION INTERFACE 152 A.3 HYBRIDIZATION INTERFACE 154 A.4 ADDITIONAL INFORMATION ABOUT MALLBA 156 B ACRONYMS 157 REFERENCES 159 Contents Part I: Introduction 1 Introduction................................................ 3 1.1 Optimization.............................................. 4 1.2 Metaheuritics............................................. 5 1.3 Evolutionary Algorithms.................................. 7 1.4 Decentralized Genetic Algorithms......................... 10 1.5 Conclusions.............................................. 12 2 Parallel Models for Genetic Algorithms...................... 15 2.1 Panmictic Genetic Algorithms ............................ 17 2.2 Structured Genetic Algorithms............................ 18 2.3 Parallel Genetic Algorithms. . .......................... 19 2.3.1 Parallel Models.................................. 20 2.3.2 A Brief Survey on Parallel GAs..................... 23 2.3.3 New Trends in pGAs ................................ 25 2.4 First Experimental Results............................... 26 2.4.1 MAXSAT Problem..................................... 26 2.4.2 Analysis of Results................................ 27 2.5 Summary.................................................. 29 3 Best Practices in Reporting Results with Parallel Genetic Algorithms.......................................... 31 3.1 Parallel Performance Measures............................ 32 3.1.1 Speedup ........................................... 32 3.1.2 Other Parallel Measures............................ 36 3.2 How to Report Results in pGAs........................ 37 3.2.1 Experimentation.................................... 37 3.2.2 Measuring Performance.............................. 39 3.2.3 Quality of the Solutions.......................... 39 3.2.4 Computational Effort............................... 40 X Contents 3.2.5 Statistical Analysis ................................. 41 3.2.6 Reporting Results .................................. 42 3.3 Inadequate Utilization of Parallel Metrics.................. 43 3.4 Illustrating the Influence of Measures...................... 45 3.4.1 Example 1: On the Absence of Information.............. 46 3.4.2 Example 2: Relaxing the Optimum Helps................. 47 3.4.3 Example 3: Clear Conclusions do Exist................. 48 3.4.4 Example 4: Meaningfulness Does Not Mean Clear Superiority........................................... 48 3.4.5 Example 5: Speedup: Avoid Comparing Apples against Oranges....................................... 49 3.4.6 Example 6: A Predefined Effort Could Hinder Clear Conclusions........................................... 50 3.5 Conclusions................................................. 51 Part II: Characterization of Parallel Genetic Algorithms 4 Theoretical Models of Selection Pressure for Distributed GAs............................................. 55 4.1 Existing Theoretical Models.............................. 57 4.1.1 The Logistic Model................................. 57 4.1.2 The Hypergraph Model............................... 57 4.1.3 Other Models....................................... 58 4.2 Analyzed Models........................................ 59 4.3 Effects of the Migration Policy on the Actual Growth Curves................................................. 60 4.3.1 Parameters . .................................... 61 4.3.2 Migration Topology................................. 61 4.3.3 Migration Frequency................................ 63 4.3.4 Migration Rate..................................... 64 4.3.5 Analysis of the Results............................ 65 4.4 Takeover Time Analysis................................... 68 4.5 Conclusions............................................ 71 Part III: Applications of Parallel Genetic Algorithms 5 Natural Language Tagging with Parallel Genetic Algorithms............................................. 75 5.1 Statistical Tagging................................... 77 5.2 Automatic Tagging with Metaheuristics.................... 79 5.2.1 Genetic Algorithm................................... 79 5.2.2 CHC Algorithm....................................... 80 5.2.3 Simulated Annealing................................. 80 5.2.4 Parallel Versions................................ 80 Contents XI 5.3 Algorithm Decisions: Representation, Evaluation, and Operators................................................. 81 5.3.1 Individuals......................................... 81 5.3.2 Fitness Evaluation.................................. 82 5.3.3 Genetic Operators .................................. 82 5.4 Experimental Design and Analysis.......................... 83 5.5 Conclusions............................................... 89 6 Design of Combinational Logic Circuits....................... 91 6.1 Problem Definition ....................................... 92 6.2 Encoding Solutions into Strings........................... 94 6.3 Related Works............................................. 97 6.4 Sequential, Parallel, and Hybrid Approaches............... 97 6.5 Computational Experiments and Analysis of Their Results.................................................. 102 6.5.1 Case Study 1: Sasao................................ 104 6.5.2 Case Study 2: Catherine.......................... 106 6.5.3 Case Study 3: Katz 1............................... 108 6.5.4 Case Study 4: 2-Bit Multiplier................... 109 6.5.5 Case Study 5: Katz 2.............................. 110 6.6 Overall Discussion....................................... 113 6.7 Conclusions and Future Work.............................. 114 7 Parallel Genetic Algorithm for the Workforce Planning Problem...................................................... 115 7.1 The Workforce Planning Problem .......................... 116 7.2 Design of a Genetic Algorithm............................ 118 7.2.1 Solution Encoding.................................. 118 7.2.2 Evaluation the Quality of a Solution............... 119 7.2.3 Repairing/Improving Operator....................... 120 7.2.4 Recombination Operator............................. 120 7.2.5 Mutation Operator.................................. 122 7.2.6 The Proposed Parallel GA........................... 122 7.3 Scatter Search........................................... 123 7.3.1 Seeding the Initial Population..................... 124 7.3.2 Improvement Method................................. 124 7.3.3 Parallel SS........................................ 125 7.4 Computational Experiments and Analysis of Results........ 125 7.4.1 Problem Instances................................. 126 7.4.2 Results: Workforce Planning Performance............ 126 7.4.3 Results: Computational Times....................... 129 7.4.4 A Parallel Hybrid GA............................... 132 7.5 Conclusions.............................................. 134 XII Contents 8 Parallel GAs in Bioinformatics: Assembling DNA Fragments................................................... 135 8.1 The Work of a DNA Fragment Assembler.................... 136 8.1.1 DNA Sequencing Process............................ 136 8.2 Related Literature...................................... 139 8.3 The pGA DNA Assembler................................... 140 8.3.1 Solution Encoding................................. 140 8.3.2 Solution Evaluation............................... 140 8.3.3 Genetic Operators................................. 141 8.3.4 The Parallel Approach............................. 142 8.4 Experimental Validation................................. 143 8.4.1 Target Problem Instances.......................... 143 8.4.2 Parameterization.................................. 144 8.4.3 Analysis of Results............................... 144 8.5 Conclusions............................................. 147 A The MALLBA Library ............................................ 149 A.l Skeleton Interfaces................................... 151 A. 2 Communication Interface................................. 152 A.3 Hybridization Interface................................. 154 A.4 Additional Information about MALLBA..................... 156 B Acronyms....................................................... 157 References....................................................... 159 Contents Part I: Introduction 1 2 3 1 Introduction............................................... 3 1.1 Optimization.............................................. 4 1.2 Metaheuritics............................................. 5 1.3 Evolutionary Algorithms.................................. 7 1.4 Decentralized Genetic Algorithms......................... 10 1.5 Conclusions............................................ 12 2 Parallel Models for Genetic Algorithms...................... 15 2.1 Panmictic Genetic Algorithms ............................ 17 2.2 Structured Genetic Algorithms............................ 18 2.3 Parallel Genetic Algorithms.............................. 19 2.3.1 Parallel Models.................................. 20 2.3.2 A Brief Survey on Parallel GAs..................... 23 2.3.3 New Trends in pGAs .............................. 25 2.4 First Experimental Results............................. 26 2.4.1 MAXSAT Problem..................................... 26 2.4.2 Analysis of Results................................ 27 2.5 Summary................................................ 29 3 Best Practices in Reporting Results with Parallel Genetic Algorithms.......................................... 31 3.1 Parallel Performance Measures............................ 32 3.1.1 Speedup .......................................... 32 3.1.2 Other Parallel Measures ......................... 36 3.2 How to Report Results in pGAs............................ 37 3.2.1 Experimentation.................................... 37 3.2.2 Measuring Performance.............................. 39 3.2.3 Quality of the Solutions........................... 39 3.2.4 Computational Effort............................... 40 X Contents 3.2.5 Statistical Analysis.................................. 41 3.2.6 Reporting Results .................................... 42 3.3 Inadequate Utilization of Parallel Metrics.................. 43 3.4 Illustrating the Influence of Measures.................... 45 3.4.1 Example 1: On the Absence of Information.............. 46 3.4.2 Example 2; Relaxing the Optimum Helps................. 47 3.4.3 Example 3: Clear Conclusions do Exist................. 48 3.4.4 Example 4: Meaningfulness Does Not Mean Clear Superiority........................................... 48 3.4.5 Example 5: Speedup: Avoid Comparing Apples against Oranges....................................... 49 3.4.6 Example 6: A Predefined Effort Could Hinder Clear Conclusions......................................... 50 3.5 Conclusions................................................. 51 Part II: Characterization of Parallel Genetic Algorithms 4 Theoretical Models of Selection Pressure for Distributed GAs............................................. 55 4.1 Existing Theoretical Models............................. 57 4.1.1 The Logistic Model................................. 57 4.1.2 The Hypergraph Model............................... 57 4.1.3 Other Models...................................... 58 4.2 Analyzed Models.......................................... 59 4.3 Effects of the Migration Policy on the Actual Growth Curves................................................... 60 4.3.1 Parameters ........................................ 61 4.3.2 Migration Topology................................. 61 4.3.3 Migration Frequency ............................... 63 4.3.4 Migration Rate .................................. 64 4.3.5 Analysis of the Results ........................... 65 4.4 Takeover Time Analysis................................... 68 4.5 Conclusions.............................................. 71 Part III: Applications of Parallel Genetic Algorithms 5 Natural Language Tagging with Parallel Genetic Algorithms............................................. 75 5.1 Statistical Tagging..................................... 77 5.2 Automatic Tagging with Metaheuristics................... 79 5.2.1 Genetic Algorithm................................. 79 5.2.2 CHC Algorithm....................................... 80 5.2.3 Simulated Annealing................................. 80 5.2.4 Parallel Versions.................................. 80 Contents XI 5 3 Algorithm Decisions: Representation, Evaluation, and Operators................................................. 81 5.3.1 Individuals......................................... 81 5.3.2 Fitness Evaluation.................................. 82 5.3.3 Genetic Operators................................. 82 5.4 Experimental Design and Analysis.......................... 83 5.5 Conclusions............................................... 89 6 Design of Combinational Logic Circuits....................... 91 6.1 Problem Definition....................................... 92 6.2 Encoding Solutions into Strings........................... 94 6.3 Related Works............................................. 97 6.4 Sequential, Parallel, and Hybrid Approaches............... 97 6.5 Computational Experiments and Analysis of Their Results.................................................. 102 6.5.1 Case Study 1: Sasao................................ 104 6.5.2 Case Study 2: Catherine.......................... 106 6.5.3 Case Study 3: Katz 1............................... 108 6.5.4 Case Study 4: 2-Bit Multiplier .................... 109 6.5.5 Case Study 5: Katz 2............................... 110 6.6 Overall Discussion....................................... 113 6.7 Conclusions and Future Work.............................. 114 7 Parallel Genetic Algorithm for the Workforce Planning Problem...................................................... 115 7.1 The Workforce Planning Problem .......................... 116 7.2 Design of a Genetic Algorithm............................ 118 7.2.1 Solution Encoding.................................. 118 7.2.2 Evaluation the Quality of a Solution . ............ 119 7.2.3 Repairing/Improving Operator....................... 120 7.2.4 Recombination Operator............................. 120 7.2.5 Mutation Operator.................................. 122 7.2.6 The Proposed Parallel GA........................... 122 7.3 Scatter Search........................................... 123 7.3.1 Seeding the Initial Population..................... 124 7.3.2 Improvement Method................................. 124 7.3.3 Parallel SS ....................................... 125 7.4 Computational Experiments and Analysis of Results........ 125 7.4.1 Problem Instances............................... 126 7.4.2 Results: Workforce Planning Performance............ 126 7.4.3 Results: Computational Times....................... 129 7.4.4 A Parallel Hybrid GA............................... 132 7.5 Conclusions.............................................. 134 XII Contents 8 Parallel G As in Bioinfor matics: Assembling DNA Fragments.................................................. 135 8.1 The Work of a DNA Fragment Assembler.................... 136 8.1.1 DNA Sequencing Process............................ 136 8.2 Related Literature...................................... 139 8.3 The pGA DNA Assembler................................... 140 8.3.1 Solution Encoding................................. 140 8.3.2 Solution Evaluation............................... 140 8.3.3 Genetic Operators................................. 141 8.3.4 The Parallel Approach............................. 142 8.4 Experimental Validation................................. 143 8.4.1 Target Problem Instances.......................... 143 8.4.2 Parameterization.................................. 144 8.4.3 Analysis of Results............................... 144 8.5 Conclusions........................................... 147 A The MALLBA Library .......................................... 149 A.l Skeleton Interfaces..................................... 151 A. 2 Communication Interface................................. 152 A.3 Hybridization Interface................................. 154 A.4 Additional Information about MALLBA..................... 156 B Acronyms..................................................... 157 References....................................................... 159
any_adam_object 1
author Luque, Gabriel
Alba, Enrique
author_facet Luque, Gabriel
Alba, Enrique
author_role aut
aut
author_sort Luque, Gabriel
author_variant g l gl
e a ea
building Verbundindex
bvnumber BV039160680
classification_rvk ST 300
ctrlnum (OCoLC)746282544
(DE-599)DNB1012138763
dewey-full 519.62
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.62
dewey-search 519.62
dewey-sort 3519.62
dewey-tens 510 - Mathematics
discipline Maschinenbau / Maschinenwesen
Informatik
Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02875nam a2200553 cb4500</leader><controlfield tag="001">BV039160680</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180221 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">110727s2011 xx a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1012138763</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642220838</subfield><subfield code="9">978-3-642-22083-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642268687</subfield><subfield code="c">Pb. : EUR 123.04 (DE) (freier Pr.), EUR 126.49 (AT) (freier Pr.), sfr 153.50 (freier Pr.)</subfield><subfield code="9">978-3-642-26868-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642220835</subfield><subfield code="9">3-642-22083-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3642268684</subfield><subfield code="9">3-642-26868-4</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Best.-Nr.: 86026960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)746282544</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1012138763</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.62</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Luque, Gabriel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel genetic algorithms</subfield><subfield code="b">theory and real world applications</subfield><subfield code="c">Gabriel Luque and Enrique Alba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">[2011]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 171 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">367</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Paralleler Algorithmus</subfield><subfield code="0">(DE-588)4193615-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Paralleler Algorithmus</subfield><subfield code="0">(DE-588)4193615-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alba, Enrique</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-22084-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in computational intelligence</subfield><subfield code="v">367</subfield><subfield code="w">(DE-604)BV020822171</subfield><subfield code="9">367</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3831164&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=4389967&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024178185&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024178185&amp;sequence=000003&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=024178185&amp;sequence=000005&amp;line_number=0003&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024178185</subfield></datafield></record></collection>
id DE-604.BV039160680
illustrated Illustrated
indexdate 2024-12-20T15:51:27Z
institution BVB
isbn 9783642220838
9783642268687
3642220835
3642268684
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-024178185
oclc_num 746282544
open_access_boolean
owner DE-11
DE-739
owner_facet DE-11
DE-739
physical XII, 171 Seiten Illustrationen, Diagramme
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher Springer
record_format marc
series Studies in computational intelligence
series2 Studies in computational intelligence
spellingShingle Luque, Gabriel
Alba, Enrique
Parallel genetic algorithms theory and real world applications
Studies in computational intelligence
Genetischer Algorithmus (DE-588)4265092-6 gnd
Paralleler Algorithmus (DE-588)4193615-2 gnd
subject_GND (DE-588)4265092-6
(DE-588)4193615-2
title Parallel genetic algorithms theory and real world applications
title_auth Parallel genetic algorithms theory and real world applications
title_exact_search Parallel genetic algorithms theory and real world applications
title_full Parallel genetic algorithms theory and real world applications Gabriel Luque and Enrique Alba
title_fullStr Parallel genetic algorithms theory and real world applications Gabriel Luque and Enrique Alba
title_full_unstemmed Parallel genetic algorithms theory and real world applications Gabriel Luque and Enrique Alba
title_short Parallel genetic algorithms
title_sort parallel genetic algorithms theory and real world applications
title_sub theory and real world applications
topic Genetischer Algorithmus (DE-588)4265092-6 gnd
Paralleler Algorithmus (DE-588)4193615-2 gnd
topic_facet Genetischer Algorithmus
Paralleler Algorithmus
url http://deposit.dnb.de/cgi-bin/dokserv?id=3831164&prov=M&dok_var=1&dok_ext=htm
http://deposit.dnb.de/cgi-bin/dokserv?id=4389967&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000003&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024178185&sequence=000005&line_number=0003&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV020822171
work_keys_str_mv AT luquegabriel parallelgeneticalgorithmstheoryandrealworldapplications
AT albaenrique parallelgeneticalgorithmstheoryandrealworldapplications
  • Availability

‌

Order via interlibrary loan
Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline