PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications
Gespeichert in:
Weitere beteiligte Personen: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
London
Springer
2008
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017073593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XXI, 1137 S. Ill., graph. Darst. |
ISBN: | 9781848009356 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035268171 | ||
003 | DE-604 | ||
005 | 20150804 | ||
007 | t| | ||
008 | 090126s2008 xx ad|| |||| 00||| eng d | ||
015 | |a 08,N31,0739 |2 dnb | ||
020 | |a 9781848009356 |c Gb. : EUR 144.40 (freier Pr.), sfr 224.00 (freier Pr.) |9 978-1-84800-935-6 | ||
024 | 3 | |a 9781848009356 | |
028 | 5 | 2 | |a 11880363 |
035 | |a (OCoLC)288466950 | ||
035 | |a (DE-599)BVBBV035268171 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a QD569 | |
082 | 0 | |a 621.312429 |2 22 | |
084 | |a VE 7040 |0 (DE-625)147136:253 |2 rvk | ||
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
084 | |a 620 |2 sdnb | ||
245 | 1 | 0 | |a PEM fuel cell electrocatalysts and catalyst layers |b fundamentals and applications |c Hrsg. Jiujun Zhang |
264 | 1 | |a London |b Springer |c 2008 | |
300 | |a XXI, 1137 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Catalysts | |
650 | 4 | |a Electrocatalysis | |
650 | 4 | |a Proton exchange membrane fuel cells | |
650 | 0 | 7 | |a Brennstoffzelle |0 (DE-588)4008195-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Katalyse |0 (DE-588)4029921-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Brennstoffzelle |0 (DE-588)4008195-3 |D s |
689 | 0 | 1 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Zhang, Jiujun |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-84800-936-3 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017073593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-017073593 |
Datensatz im Suchindex
_version_ | 1819268767812681728 |
---|---|
adam_text | Contents
1
1
РЕМ
Fuel Cell Fundamentals
....................................................................
Xiao-Zi Yuan and Haijiang Wang
1.1
Overview
.....................................................................................................1
1.1.1
Introduction
......................................................................................1
1.1.2
Main Cell Components and Materials
...........................................11
1.1.3
РЕМ
Fuel Cell Operation
..............................................................17
1.1.4
РЕМ
Fuel Cell Applications
..........................................................25
1.2
Thermodynamics
.......................................................................................31
1.2.1
Basic Reactions
..............................................................................31
.2.2
Heat of Reaction
............................................................................41
.2.3
Effect of Operation Conditions on Reversible Fuel Cell
Potential
.........................................................................................42
.2.4
Open Circuit Voltage
.....................................................................44
.2.5
Fuel Cell Efficiency
.......................................................................48
.2.6
Summary
........................................................................................50
1.3
Reaction Kinetics
.......................................................................................53
1.3.1
Electrode Reactions
.......................................................................53
1.3.2
Reaction Rate
.................................................................................53
1.3.3
Mass Transfer
.................................................................................60
1.3.4
Multiple Kinetics
...........................................................................65
1.3.5
Polarization Curve and Voltage Losses
.........................................67
1.3.6
Measures to Improve Cell Performance
........................................78
References
..........................................................................................................79
2
Electrocatalytic Oxygen Reduction Reaction
................................................89
Chaojie Song andJiujun Zhang
2.1
Introduction
...............................................................................................89
2.1.1
Electrochemical O2 Reduction Reactions
......................................89
2.1.2
Kinetics of the O2 Reduction Reaction
..........................................90
2.1.3
Techniques Used in Electrocatalytic O2 Reduction Reactions
.....93
2.2
Oxygen Reduction on Graphite and Carbon
...........................................101
2.2.1
Oxygen Reduction Reaction Mechanisms
..................................102
Contents
2.2.2
Kinetics of the
ORR
on Carbon Materials
..................................107
2.2.3
Catalytic Sites on Carbon Materials
............................................108
2.3
Oxygen Reduction Catalyzed by Quinone and Derivatives
...................109
2.3.1
АО
Process for O2 Reduction to Produce H2O2
..........................109
2.3.2
ORR
Mechanism Electrochemically Catalyzed by Quinone
......110
2.4
Oxygen Reduction on Metal Catalysts
...................................................110
2.4.1
ORR
Mechanism on Pt
................................................................110
2.4.2
Mixed Pt Surface and Rest Potential on Pt
.................................112
2.4.3
ORRKinetics onPt
......................................................................113
2.4.4
ORR
on Pt Alloys
........................................................................114
2.4.5
Catalytic
ORR
on Other Metals
...................................................116
2.5
ORR
on Macrocyclic Transition Metal Complexes
...............................117
2.5.1
ORR
Mechanisms Catalyzed by Transition Metal Macrocyclic
Complexes
....................................................................................117
2.5.2
Transition Metal
Macrocycles
as
ORR
Catalysts
.......................117
2.5.3
ORR
Kinetics Catalyzed by Transition Metal Macrocyclic
Complexes
....................................................................................121
2.6
ORR
Catalyzed by Other Catalysts
.........................................................122
2.6.1
ORR
Catalyzed by Transition Metal Chalcogenides
..................122
2.6.2
ORR
Catalyzed by Transition Metal Carbide
.............................124
2.7 Superoxide
Ion
.........................................................................................125
2.7.1
Production of
Superoxide Ion
by Other Methods
.......................125
2.7.2
Properties of
Superoxide Ion.......................................................126
2.7.3
Stability of
Superoxide Ion..........................................................127
2.7.4 Superoxide
Production by Electrocatalysis
.................................127
2.8
Conclusions
.............................................................................................129
References
........................................................................................................129
Electrocatalytic H2 Oxidation Reaction
.......................................................135
Hui
Li, Kunchan Lee andJiujun Zhang
3.1
Introduction
.............................................................................................135
3.2
Electrooxidation of Hydrogen
.................................................................136
3.2.1
Mechanism of the Hydrogen Oxidation Reaction
.......................136
3.2.2
Thermodynamic Considerations for the Hydrogen Electrode
Reaction
........................................................................................138
3.2.3
Kinetics of the Hydrogen Oxidation Reaction
.............................138
3.2.4
Hydrogen Adsorption Behavior
...................................................143
3.2.5
Kinetic Parameters of the Hydrogen Oxidation Reaction
...........147
3.3
Electrocatalysis of Hydrogen Oxidation
.................................................149
3.3.1
Platinum and Platinum Group Metals
(Pt, Ru, Pd,
Ir, Os,
and
Rh)
........................................................................................149
3.3.2
Carbides
........................................................................................156
3.3.3
Raney Nickel
................................................................................156
3.3.4
Typical Example Analysis
-
PtRu Alloy as a CO-tolerant
Catalyst for the
HOR
...................................................................157
3.4
Conclusions
.............................................................................................159
References
........................................................................................................159
Contents xi
4 Electrocatalytic
Oxidation
of
Methanol,
Ethanol
and Formic Acid
.........165
Előd Gyenge
4.1
Introduction
................................................................................................165
4.1.1
Historical Overview:
1960-1990................................................165
4.1.2
Objectives
.....................................................................................171
4.2
Reaction Pathways, Catalyst Selection and Performance:
Example Analysis
....................................................................................172
4.2.1
Methanol Electrooxidation
..........................................................172
4.2.2
Formic Acid Electrooxidation
.....................................................201
4.2.3
Ethanol
Electrooxidation
.............................................................219
4.2.4
Non-precious Metal Catalysts for
Methanol,
Formic Acid,
and
Ethanol
Oxidation
.................................................................224
4.3
Advances in Anode Catalyst Layer Engineering: Example
Analysis
...................................................................................................230
4.3.1
Engineering of the Catalyst Surface and Morphology
.................230
4.3.2
The Catalytic Interface: Catalyst/Support/Ionomer
Interaction
....................................................................................236
4.4
Conclusions
.............................................................................................269
References
........................................................................................................270
5
Application of First Principles Methods in the Study of Fuel Cell
Air-Cathode Electrocatalysis
........................................................................289
Zheng Shi
5.1
Introduction
.............................................................................................289
5.2
Background
..............................................................................................290
5.2.1
Theoretical Methods
....................................................................290
5.2.2
Oxygen Reduction Reaction
........................................................291
5.3
Surface Adsorption
..................................................................................293
5.3.1
Computational Methods
...............................................................294
5.3.2
Adsorption on Transition Metals
.................................................295
5.3.3
Adsorption on Bimetallic Alloys
.................................................299
5.4
Activation Energy
....................................................................................306
5.4.1
Computational Method
................................................................306
5.4.2
Example Calculations
..................................................................307
5.5
Thermodynamic Properties: Reversible Potential and
Reaction Energy
......................................................................................311
5.5.1
Reversible Potential
.....................................................................311
5.5.2
Reaction Thermodynamics
..........................................................313
5.6
Study of Non-noble Catalysts
.................................................................316
5.7
Summary
................................................................................................324
References
........................................................................................................324
6
Catalyst Contamination in
РЕМ
Fuel Cells
................................................331
Hui Li,
Chaojie Song, Jianlu Zhang andJiujun Zhang
6.1
Introduction
.............................................................................................331
6.2
Anode Catalyst Layer Contamination
.....................................................331
6.2.1
Impacts of Carbon Dioxide
..........................................................332
xii Contents
6.2.2
Impacts
of Hydrogen
Sulfide (H2S)
...........................................334
6.2.3
Impacts of Ammonium (NH3)
....................................................337
6.2.4
Modeling of the Contamination of the PEMFC
Anode Catalyst
.............................................................................337
6.2.5
Mitigation of Anode Contamination
...........................................339
6.3
Cathode Catalyst Layer Contamination
..................................................339
6.3.1
SO, Contamination
......................................................................340
6.3.2
NO* Contamination
......................................................................343
6.3.3
NH3 and H2S Contamination
.......................................................346
6.3.4
Volatile Organic Compounds (VOCs) Contamination
...............347
6.3.5
Ozone Contamination
..................................................................348
6.3.6
The Contamination Effects of Multi-contaminants
...................348
6.3.7
Modeling of PEMFC Cathode Catalyst Contamination
.............349
6.4
Additive Effects of Anode and Cathode Contamination
........................349
6.5
Summary
................................................................................................350
References
........................................................................................................351
7
РЕМ
Fuel Cell Catalyst Layers and MEAs
.................................................355
Pei Kang Shen
7.1
Fundamentals of Catalyst Layers
............................................................355
7.1.1
Components and Structure
...........................................................356
7.1.2
Functions and Reactions
..............................................................356
7.1.3
Factors Affecting the Performance of CLs
.................................359
7.1.4
Catalyst Layers for Liquid Fuel Cells
.........................................366
7.1.5
Catalyst Layers for
Anion
Exchange Membrane Fuel Cells
......367
7.2
Principles of Membrane Electrode Assembly
(MEA)
...........................369
7.2.1
Classification of
MEA
Materials
.................................................370
7.2.2
Methods for
MEA
Fabrication
....................................................371
7.2.3
Technical Consideration
..............................................................372
7.2.4
MEA
for
Anion
Exchange Membrane Fuel Cells
.......................373
7.3
Conclusions
.............................................................................................374
References
........................................................................................................374
8
Catalyst Layer Modeling: Structure, Properties and Performance
.........381
Michael H. Eikerling, Kourosh
Málek
and Qianpu Wang
8.1
Introduction
.............................................................................................381
8.2
Understanding Structure and Operation of Catalyst Layers
...................383
8.2.1
Challenges for the Structural Design
...........................................383
8.2.2
Porous Electrode Theory: Historical Perspective
.......................384
8.2.3
Misapprehensions and Controversial Issues
...............................387
8.2.4
Effectiveness of Catalyst Utilization
...........................................388
8.2.5
Evaluating the Performance of CLs
............................................391
8.3
State of the Art in Theory and Modeling: Multiple Scales
....................395
8.4
Structural Formation of Catalyst Layers and Effective Properties
........398
8.4.1
Molecular Dynamics Simulations
...............................................398
8.4.2
Atomistic MD Simulations of CLs
..............................................400
8.4.3
Meso-scale Model of
CL Microstructure
Formation
..................403
Contents xiii
8.4.4
Structure-related Effective Properties of CLs
.............................407
8.5
Performance Modeling and Optimization Studies
..................................412
8.5.1
General Framework of Performance Modeling
..........................412
8.5.2
Transport and Reaction in Catalyst Layers
.................................415
8.5.3
Spherical Agglomerates
...............................................................418
8.5.4
Main Results of the Macrohomogeneous Approach
...................425
8.5.5
Water Management in CCLs
.......................................................428
8.6
Comparison and Evaluation of Catalyst Layer Designs
.........................433
8.6.1
Conventional Catalyst Layers
......................................................434
8.6.2
Ultra-thin Two-phase Catalyst Layers
........................................434
8.7
Summary and Outlook
.............................................................................438
References
........................................................................................................439
9
Catalyst Synthesis Techniques
......................................................................447
Christina
Bock, Helga Halvor
sen and Barry MacDougall
9.1
Introduction
.............................................................................................447
9.2
Catalysis Synthesis Methods
...................................................................447
9.2.1
Low-temperature Chemical Precipitation
...................................448
9.2.2
Colloidal
.......................................................................................448
9.2.3
Sol-gel
........................................................................................449
9.2.4
Impregnation
................................................................................450
9.2.5
Microemulsions
............................................................................451
9.2.6
Electrochemical
............................................................................453
9.2.7
Spray Pyrolysis
............................................................................454
9.2.8
Vapor Deposition
.........................................................................455
9.2.9
High-energy Ball Milling
............................................................457
9.3
Particle Size and Shape Control
..............................................................458
9.3.1
Mechanism for Size Control Using Colloidal
Synthesis Methods
.......................................................................460
9.3.2
Size Control Using Electrochemical Methods
............................463
9.3.3
Assistance of Templates and Template Preparation
...................463
9.3.4
Shape Control
...............................................................................467
9.4
Bi-metallic Catalysts
...............................................................................468
9.4.1
Synthesis of Alloy versus Two-phase Catalysts
.........................468
9.4.2
Sub-monolayer Deposition of Ad-metals
....................................472
9.5
Non-noble Metal Catalyst Synthesis
.......................................................474
9.5.1
Macrocyclic Complexes
..............................................................474
9.5.2 Methanol
Tolerance and the Economics of these Catalysts
........476
9.5.3
Transition Metal Chalcogenides
..................................................477
9.5.4
Conclusions
..................................................................................478
References
........................................................................................................479
10
Physical Characterization of Electrocatalysts
.............................................487
Shijun Liao, Baitao Li and Yingwei Li
10.1
Introduction
.............................................................................................487
10.2
Analysis of Composition and Phase of Catalyst
.....................................488
10.2.1
X-ray Diffraction (XRD) and Electron Diffraction (ED)
...........488
xiv Contents
10.2.2
X-ray Fluorescence (XRF), X-ray Emission (XRE), and
Proton-induced X-ray Emission (PIXE)
......................................497
10.3
Measurement of Physical Surface Area and Electrochemical Active
Surface Area
............................................................................................498
10.3.1
BET Method and Physical Surface Area
.....................................498
10.3.2
Electrochemical Hydrogen Adsorption/Desorption
....................499
10.3.3
Typical Examples Analysis
.........................................................501
10.4
Morphology of Catalysts and Their Active Components
.......................505
10.4.1
Scanning Electron Microscopy
(SEM)........................................505
10.4.2
Transmission Electron Microscopy
.............................................506
10.4.3
Typical Examples
.........................................................................507
10.5
The Structure and Crystallography of Surface and Small Active
Component Particles
................................................................................512
10.5.1
Principles of Electron Spectroscopy for Chemical Analysis
(ESCA)
........................................................................................512
10.5.2
X-ray Photoelectron Spectroscopy (XPS)
...................................513
10.5.3
UV-induced Photoelectron Spectroscopy (UVPS)
.....................519
10.5.4
Energy Dispersive Spectroscopy (EDS) and its Application
......522
10.6
Analysis of the Stability of Catalysts by the Thermal Analysis
Method
...................................................................................................525
10.6.1
Principles
......................................................................................525
10.6.2
Application
...................................................................................526
10.6.3
Typical Examples of Analysis
.....................................................527
10.7
Other Structural Techniques for Characterizing the Bulk and Surface
ofElectrocatalysts
...................................................................................532
10.7.1
FTIR and UV-VIS
........................................................................532
10.7.2
TPD/TPR
......................................................................................534
10.8
Conclusion
..............................................................................................536
References
........................................................................................................536
11
Electrochemical Methods for Catalyst Activity Evaluation
......................547
Zhigang Qi
11.1
Electrochemical Cells
..............................................................................547
11.1.1
Introduction
.................................................................................547
11.1.2
Conventional
З-ЕіесШміе
Cells
...................................................548
11.1.3
Half-cells
......................................................................................551
11.1.4
Single Cells
..................................................................................553
11.2
Brief Principles of Electrochemical Instrumentation
.............................556
11.3
Cyclic Voltammetry
................................................................................556
11.3.1
Basic Principles
............................................................................556
11.3.2
Potential Step Experiment
...........................................................558
11.3.3
Instrumentation: Potentiostat
.......................................................559
11.3.4
Applications
.................................................................................560
11.4
Rotating Disk and Rotating Ring-disk Electrode Techniques
................567
11.4.1
Theories and Principles
................................................................567
11.4.2
Instrumentation
.............................................................................570
11.4.3
Fuel Cell-related Applications
.....................................................570
Contents xv
11.5 Electrochemical
Impedance Spectroscopy
.............................................573
11.5.1
Theories and Principles
................................................................573
11.5.2
Instrumentation
.............................................................................578
11.5.3
Application in Fuel Cells
.............................................................578
11.6
Current Interruption and Current Pulse Techniques
................................585
11.6.1
Principles and Instrumentation
....................................................585
11.6.2
Application in Fuel Cells
.............................................................587
11.7
Steady-state I-V Polarization
...................................................................588
11.7.1
Principles and Instrumentation
....................................................588
11.7.2
Fuel Cell Hardware
......................................................................589
11.7.3
Fuel Cell Performance
..................................................................590
11.8
Durability Evaluation
...............................................................................592
11.8.1
Introduction
..................................................................................592
11.8.2
Techniques
....................................................................................593
11.9
Summary
...................................................................................................602
List of Symbols
.................................................................................................602
References
........................................................................................................604
12
Combinatorial Methods for
РЕМ
Fuel Cell Electrocatalysts
....................609
Hansan Liu andJiujun Zhang
12.1
Introduction
.............................................................................................609
12.1.1
Combinatory Material Chemistry
................................................609
12.1.2
Electrocatalysis in
РЕМ
Fuel Cells
.............................................611
12.2
Combinatorial Methods for Fuel Cell Electrocatalysis
..........................612
12.2.1
Catalyst Library Preparation
........................................................612
12.2.2
Catalyst Activity Down-selection
................................................617
12.3
Combinatorial Discoveries of Fuel Cell Electrocatalysts
........................622
12.3.1
Low/Non-platinum Content Catalysts for
РЕМ
Fuel Cell
Cathodes
.......................................................................................623
12.3.2
CO-tolerant Catalysts for
РЕМ
Fuel Cell Anodes
......................625
12.3.3
Platinum Alloy Catalysts for Direct
Methanol
Fuel Cell
Anodes
........................................................................................625
12.3.4 Methanol-tolerant
Catalysts for Direct
Methanol
Fuel Cell
Cathodes
.......................................................................................627
12.4
Conclusions
..............................................................................................628
References
........................................................................................................629
13
Platinum-based Alloy Catalysts for
РЕМ
Fuel Cells
..................................631
Hansan Liu, Dingguo Xia andJiujun Zhang
13.1
Introduction
.............................................................................................631
13.2
Pt-based Alloy Catalysts for
РЕМ
Fuel Cell Cathodes
..........................632
13.2.1
The Alloying Effect on Cathode Catalyst Activity
.....................632
13.2.2
Mechanism of the Alloying Effect on Cathode Catalysts
...........635
13.2.3
Stability of Pt-based Alloy Cathode Catalysts
............................640
13.3
Pt-based Alloy Catalysts for DMFC Anodes
..........................................643
13.3.1
The Alloying Effect on Anode Catalyst Activity
........................643
13.3.2
Mechanism of the Alloying Effect on Anode Catalysts
..............646
xvi Contents
13.3.3
The Stability of Pt-based Alloy Anode Catalysts
........................649
13.4
Concluding Remarks
...............................................................................650
References
........................................................................................................651
14
Nanotubes, Nanofibers and Nanowires as Supports for Catalysts
...........655
Xueliang Sun and Madhu Sudan Saha
14.1
Introduction
.............................................................................................655
14.1.1
The Importance of Combining Nanotechnology and Clean
Energy
..........................................................................................655
14.1.2
One-dimensional Nanomaterials Based New Catalyst
Supports
.......................................................................................656
14.2
Synthesis and Characterization of Carbon Nanotubes, Nanofibers,
and Nanowires
........................................................................................657
14.2.1
Structure and Synthesis Methods for Carbon Nanotubes
............657
14.2.2
Structure and Synthesis Methods for Carbon Nanofibers
...........661
14.2.3
Structure and Synthesis Methods for Nanowires
........................661
14.3
Synthesis and Characterization of Pt Catalysts Supported on
Carbon Nanotubes, Carbon Nanofibers and Metal Oxide Nanowires
... 665
14.3.1
Introduction
..................................................................................665
14.3.2
Methods for Depositing Pt Catalysts on Carbon Nanotubes
(Pt/CNTs)
.....................................................................................666
14.3.3
Methods for Depositing Pt Catalysts on Carbon Nanofibers
(Pt/CNFs)
.....................................................................................682
14.3.4
Methods for Depositing Pt Catalysts on Metal Oxide
Nanowires (Pt/NWs)
....................................................................684
14.3.5
Methods of Functionalizing of Carbon Nanotubes and
Nanofibers-based Fuel Cell Electrodes
.......................................687
14.4
Activity Validation of the Synthesized Catalysts in a Fuel Cell
Operation
.................................................................................................693
14.4.1
Fabrication of Membrane Electrode Assembly for Carbon
Nanotubes and Nanofibers-based Catalysts
................................693
14.4.2
Performance of Carbon Nanotubes and Nanofibers Membrane
Electrode Assembly
.....................................................................697
14.5
Stability of Carbon Nanotubes and Nanofibers-based Fuel Cell
Electrodes
................................................................................................700
14.6
Conclusions and Future Perspective
........................................................702
References
........................................................................................................704
15
Non-noble Electrocatalysts for the
РЕМ
Fuel Cell Oxygen
Reduction Reaction
.........................................................................................715
Kunchan Lee, Lei Zhang andJiujun Zhang
15.1
Introduction
..............................................................................................715
15.2.
Transition Metal
Macrocycles
for the Oxygen Reduction Reaction
......716
15.2.1.
The Central Transition Metal Effect
...........................................717
15.2.2.
The Ligand Effect
........................................................................719
15.2.3.
The Heat-treatment Effect
...........................................................720
15.2.4.
The Effect of the Synthesis Method
...........................................721
Contents xvii
15.3
Non-noble
Transition
Metal Carbides and Nitrides for the
ORR
..........725
15.3.1
Carbides
........................................................................................725
15.3.2
Nitrides
.........................................................................................728
15.3.3
Oxynitrides
...................................................................................730
15.3.4
Carbonitrides
................................................................................733
15.4
Transition Metal Chalcogenides for the
ORR
........................................734
15.5
Metal Oxides for the
ORR
......................................................................742
15.6
Conclusions
.............................................................................................748
References
........................................................................................................748
16
CO-tolerant Catalysts
....................................................................................759
SiyuYe
16.1
Introduction
.............................................................................................759
16.2
Mechanisms of CO Tolerance
.................................................................764
16.2.1
Electrochemistry of Carbon Monoxide and Hydrogen
...............766
16.2.2
Characteristics of PEMFC CO Poisoning
...................................770
16.2.3
Bifunctional Mechanism of CO Tolerance
..................................771
16.2.4
Direct Mechanism of CO Tolerance (Ligand or Electronic
Effect)
.........................................................................................773
16.2.5
Surface Science Study and Modeling of CO-tolerance
Mechanism
...................................................................................774
16.3
Development of CO-tolerant Catalysts
...................................................781
16.3.1
PtRu Binary System
.....................................................................783
16.3.2
PtMo Binary System
....................................................................787
16.3.3
PtSn Binary System
......................................................................790
16.3.4
PtM (M
=
Fe, Co,
Ni, Ta, Rh, Pd)
Binary
Systems
.....................791
16.3.5
PtRuM
(M
=
Mo, Sn,
W,
Cr, Zr, Nb, Ag, Au, Rh, Os, and Ta)
Ternary
Systems
...........................................................................794
16.3.6
The Pt, PtRu-MO* (M
=
Mo, W, and
V)
System
........................796
16.3.7
Ru-modifíed Pt
Catalysts and
Pt-modified Ru
Catalysts
............799
16.3.8
PtRu
on Functionalized Carbon and Carbon
Nanotube
Systems
........................................................................................802
16.3.9
PtAu
Binary
System
.....................................................................804
16.3.10
Pt-free Systems
...........................................................................804
16.4
Preparation of CO-tolerant Catalysts......................................................
805
16.5
Conclusions
.............................................................................................809
References
........................................................................................................811
17
Reversal-tolerant Catalyst Layers
................................................................835
SiyuYe
17.1
Introduction
.............................................................................................835
17.2
Cell Voltage Reversal
..............................................................................838
17.2.1
Air Starvation
...............................................................................838
17.2.2
Fuel Starvation
.............................................................................839
17.2.3
Electrocatalyst Degradation in
РЕМ
Fuel Cells Caused by Cell
Voltage Reversal During Fuel Starvation
...................................842
17.3
Development of Reversal-tolerant Catalyst Layers
................................845
xviii Contents
17.3.1
Reversal Tolerance Cathode Catalyst Layer
...............................846
17.3.2
Reversal Tolerance Anode Catalyst Layer
..................................847
17.4
Conclusions
.............................................................................................856
References
........................................................................................................856
18
High-temperature
РЕМ
Fuel Cell Catalysts and Catalyst Layers
...........861
Chaojie Song, Rob
Hui andJiujun
Zhang
18.1
Opportunities and Challenges for High-temperature
РЕМ
Fuel Cells...
861
18.1.1
Advantages of High-temperature
РЕМ
Fuel Cells
.....................861
18.1.2
Routes to Increase the Operating Temperature
...........................867
18.1.3
Challenges of Catalysts/Catalyst Layers
.....................................867
18.2
Catalysts for High-temperature
РЕМ
Fuel Cells
....................................868
18.2.1
Current Research Activities
.........................................................868
18.2.2
Degradation of Catalysts at High Temperatures
.........................869
18.2.3
Catalyst Support Strategy to Improve High-temperature
Catalysts/Catalyst Layers
.............................................................876
18.2.4
High-temperature Catalyst Layers
-
Components and
Structure
.......................................................................................877
18.2.5
Strategies for
HT
Catalyst/Catalyst Layer Performance
Improvement and Mitigation
.......................................................878
18.2.6
Suggestions for Future Work
.......................................................878
18.2.7
Typical Example Analysis
...........................................................878
18.3
Summary
...................................................................................................884
References
........................................................................................................884
19
Conventional Catalyst Ink, Catalyst Layer and
MEA
Preparation
.........889
Huamin Zhang, Xiaoli Wang, Jianlu Zhang andJiujun Zhang
19.1
Introduction
.............................................................................................889
19.2
Principles of Gas Diffusion Electrodes and
MEA
Structure
..................889
19.3
Catalyst Layer
..........................................................................................893
19.3.1
Preparation of Catalyst Ink
..........................................................893
19.3.2
Preparation of the Catalyst Layer
................................................895
19.4
Preparation of the
MEA
...........................................................................911
19.5
Summary and Outlook
..............................................................................911
References
........................................................................................................912
20
Spray-based and
CVĐ
Processes for Synthesis of Fuel Cell Catalysts
and Thin Catalyst Layers
..............................................................................917
Radenka Marie
20.1
Introduction
.............................................................................................917
20.2
Spray Pyrolysis Approach
.......................................................................919
20.2.1
Current Research Activities
.........................................................919
20.2.2
Spray Conversion and Aerosol Routes for Powder
Manufacturing
..............................................................................919
20.2.3
Pt Nanoparticle Preparation via Spray Route
..............................921
20.2.4
Morphology of Catalyst Deposited by Spray Pyrolysis
..............922
20.2.5
Electrochemical Performance
......................................................925
Contents xix
20.2.6 Electrocatalytic
Activity and Stability of Pt-based Catalysts
......926
20.2.7
Typical Example Analysis
...........................................................928
20.3
Deposition of Catalyst Layer by CVD
.....................................................929
20.3.1
Current Research Activities
.........................................................930
20.3.2
Film Formation from Vapor Phase by CVD
...............................931
20.3.3
Morphological and
Microstructural
Stability
..............................933
20.3.4
Electrochemical Performance and Catalytic Activity
.................935
20.3.5
Typical Examples Analysis..
........................................................939
20.4
Flame-based Processing
...........................................................................941
20.4.1
Current Research Activities
.........................................................942
20.4.2
Atomization Process
.....................................................................943
20.4.3
Particle Formation in the Flame
...................................................944
20.4.4
Particle Size Control
....................................................................946
20.4.5
Electrochemical Performance and Catalytic Activity of the
Flame Deposited Catalyst
............................................................950
20.4.6
Typical Examples Analysis
..........................................................954
20.5
Summary
...................................................................................................958
References
........................................................................................................958
21
Catalyst Layer/MEA Performance Evaluation
...........................................965
Jianlu Zhang andJiujun Zhang
21.1
Introduction
.............................................................................................965
21.2
Theoretical Analysis
................................................................................966
21.2.1
Open Circuit Voltage (OCV) of the PEMFC
..............................966
21.2.2
Exchange Current Density, i0
.......................................................968
21.2.3 Tafel
Slope,
b
...............................................................................968
21.2.4
Polarization Curve Analysis
.........................................................971
21.3
Physical Chemistry Evaluation of Catalyst Layer
..................................973
21.3.1
Pore Structure Analysis of Catalyst Layer
..................................973
21.3.2 Protonic
and Electronic Conductivity in the Catalyst Layer
.......974
21.3.3
Wettability of the Catalyst Layer
.................................................975
21.4
Catalyst Layer Evaluation in a Half-cell
.................................................978
21.4.1
Rotating Disk Electrode (RDE) Test
...........................................978
21.4.2
Cyclic Voltammetry
(CV)
Test
....................................................981
21.4.3
Polarization Curves in a Half-cell
................................................984
21.5
MEA
Evaluation by the Single-cell Test
................................................986
21.5.1
Test Station
...................................................................................986
21.5.2
Polarization Curve
........................................................................988
21.5.3
Resistance Test
-
AC Impedance Test
........................................988
21.5.4
Permeability/Crossover Test
........................................................992
21.6
Lifetime/Durability Testing of the
MEA
................................................994
21.6.1
Mechanisms of
MEA
Degradation
..............................................994
21.6.2
Durability Testing
........................................................................996
21.7
Conclusions
.............................................................................................997
References
........................................................................................................997
xx Contents
22
Catalyst Layer Composition Optimization
................................................1003
Wei Xing
22.1
Catalyst Layer Materials Selection and Evaluation
..............................1003
22.1.1
Catalyst selection
........................................................................1003
22.1.2
Gas Diffusion Layer (GDL) and Microporous Layer (MPL)
Materials Selection
.....................................................................1011
22.2
Fabrication Optimization Processes for the Catalyst Layer
ofMEAs
................................................................................................1016
22.2.1
GDL Substrate Preparation
........................................................1016
22.2.2
Microporous Layer (MPL) Preparation and Optimization
........1017
22.2.3
Catalyst Ink Composition and Preparation
................................1019
22.2.4
Carbon-supported Catalyst Layer Fabrication
...........................1023
22.2.5
Pt Catalyst Layer Fabrication
.....................................................1027
22.2.6
MEA
Fabrication and Optimization
..........................................1029
22.3
MEA
Performance Verification with its Catalyst Layer Fabrication
Optimization Process
.............................................................................1031
22.3.1
MEA
Performance Characterization
..........................................1031
22.3.2
MEA
Water Management Characterization
..............................1032
22.3.3
MEA
CO and Other Contamination Tolerance
.........................1032
22.3.4
MEA
Lifetime Enhancement via
MEA
Fabrication Process
Improvement
..............................................................................1033
References
......................................................................................................1033
23
Catalyst Layer Degradation, Diagnosis and Failure Mitigation
.............1041
Jing Li
23.1
Introduction
...........................................................................................1041
23.2
Diagnosis of Catalyst Layer Degradation: Fuel Cell Failure
Analysis
.................................................................................................1044
23.2.1
Diagnostic Tools to Identify Catalyst Degradation During
Fuel Cell Operation: Electrochemical Methods
........................1045
23.2.2
Ex situ Tools for Characterization of Catalyst Degradation
During Fuel Cell Operation
.......................................................1049
23.2.3
Durability and Accelerated Stress Testing
................................1054
23.3
Anode Catalyst Layer Degradation
.......................................................1056
23.3.1
Anode Catalyst Layer Degradation Caused by
Contamination
............................................................................1056
23.3.2
Anode Catalyst Layer Degradation-Voltage Reversal
.............1061
23.3.3
Ru Leaching and Crossover
.......................................................1064
23.4
Cathode Catalyst Layer Degradation
....................................................1066
23.4.1
Platinum Dissolution During Fuel Cell Operation
....................1066
23.4.2
Pt Accumulation and Distribution in the Membrane after
Fuel Cell Operation
....................................................................1073
23.4.3
Loss of Platinum Surface Area Due to Agglomeration
.............1075
23.4.4
Carbon Corrosion of Catalyst Layer
..........................................1080
23.5
Summary
.................................................................................................1087
References
......................................................................................................1089
Contents xxi
Acronyms and Abbreviations
...........................................................................1095
Contributor Biographies
...................................................................................1103
Author Index
.......................................................................................................1117
Subject Index
......................................................................................................1119
|
any_adam_object | 1 |
author2 | Zhang, Jiujun |
author2_role | edt |
author2_variant | j z jz |
author_facet | Zhang, Jiujun |
building | Verbundindex |
bvnumber | BV035268171 |
callnumber-first | Q - Science |
callnumber-label | QD569 |
callnumber-raw | QD569 |
callnumber-search | QD569 |
callnumber-sort | QD 3569 |
callnumber-subject | QD - Chemistry |
classification_rvk | VE 7040 VN 6050 |
ctrlnum | (OCoLC)288466950 (DE-599)BVBBV035268171 |
dewey-full | 621.312429 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.312429 |
dewey-search | 621.312429 |
dewey-sort | 3621.312429 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Maschinenbau / Maschinenwesen Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01764nam a2200469 c 4500</leader><controlfield tag="001">BV035268171</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150804 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">090126s2008 xx ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N31,0739</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848009356</subfield><subfield code="c">Gb. : EUR 144.40 (freier Pr.), sfr 224.00 (freier Pr.)</subfield><subfield code="9">978-1-84800-935-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781848009356</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11880363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)288466950</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035268171</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD569</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.312429</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 7040</subfield><subfield code="0">(DE-625)147136:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">PEM fuel cell electrocatalysts and catalyst layers</subfield><subfield code="b">fundamentals and applications</subfield><subfield code="c">Hrsg. Jiujun Zhang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 1137 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Catalysts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrocatalysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton exchange membrane fuel cells</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jiujun</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-84800-936-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017073593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017073593</subfield></datafield></record></collection> |
id | DE-604.BV035268171 |
illustrated | Illustrated |
indexdate | 2024-12-20T13:27:16Z |
institution | BVB |
isbn | 9781848009356 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017073593 |
oclc_num | 288466950 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | XXI, 1137 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spellingShingle | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications Catalysts Electrocatalysis Proton exchange membrane fuel cells Brennstoffzelle (DE-588)4008195-3 gnd Katalyse (DE-588)4029921-1 gnd |
subject_GND | (DE-588)4008195-3 (DE-588)4029921-1 |
title | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications |
title_auth | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications |
title_exact_search | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications |
title_full | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications Hrsg. Jiujun Zhang |
title_fullStr | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications Hrsg. Jiujun Zhang |
title_full_unstemmed | PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications Hrsg. Jiujun Zhang |
title_short | PEM fuel cell electrocatalysts and catalyst layers |
title_sort | pem fuel cell electrocatalysts and catalyst layers fundamentals and applications |
title_sub | fundamentals and applications |
topic | Catalysts Electrocatalysis Proton exchange membrane fuel cells Brennstoffzelle (DE-588)4008195-3 gnd Katalyse (DE-588)4029921-1 gnd |
topic_facet | Catalysts Electrocatalysis Proton exchange membrane fuel cells Brennstoffzelle Katalyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017073593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zhangjiujun pemfuelcellelectrocatalystsandcatalystlayersfundamentalsandapplications |