Families of conformally covariant differential operators, Q-Curvature and holography:
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Basel
Birkhäuser
2009
|
Series: | Progress in Mathematics
275 |
Subjects: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020150083&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Physical Description: | XIII, 488 S. graph. Darst. |
ISBN: | 9783764398996 |
Staff View
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV025549562 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t| | ||
008 | 100417s2009 xx d||| |||| 00||| eng d | ||
015 | |a 08,N49,0628 |2 dnb | ||
016 | 7 | |a 991266161 |2 DE-101 | |
020 | |a 9783764398996 |9 978-3-7643-9899-6 | ||
024 | 3 | |a 9783764398996 | |
028 | 5 | 2 | |a 12455737 |
035 | |a (OCoLC)416413709 | ||
035 | |a (DE-599)BVBBV025549562 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-188 | ||
082 | 0 | |a 516.36 |2 22/ger | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Juhl, Andreas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Families of conformally covariant differential operators, Q-Curvature and holography |c Andreas Juhl |
264 | 1 | |a Basel |b Birkhäuser |c 2009 | |
300 | |a XIII, 488 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 275 | |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Krümmung |0 (DE-588)4128765-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | 2 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 0 | 3 | |a Krümmung |0 (DE-588)4128765-4 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Progress in Mathematics |v 275 |w (DE-604)BV000004120 |9 275 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020150083&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-020150083 |
Record in the Search Index
_version_ | 1819323254835249152 |
---|---|
adam_text | CONTENT
S
PRESSICE IX
1 INTRODUCTION
1.1 HYPERBOLIC GEOMETRY AND CONFORMAL DYNAMICS 2
1.2 AUTOMORPHIC DISTRIBUTIONS AND INTERTWINING FAMILIES 6
1.3 ASYMPTOTICALLY HYPERBOLIC EINSTEIN METRICS.
CONFORMALLY COVARIANT POWERS OF THE LAPLACIAN 9
1.4 INTERTWINING FAMILIES 11
1.5 THE RESIDUE METHOD FOR THE HEMISPHERE 17
1.6 Q-CURVATURE, HOLOGRAPHY AND RESIDUE FAMILIES 20
1.7 FACTORIZATION OF RESIDUE FAMILIES. RECURSIVE RELATIONS 32
1.8 FAMILIES OF CONFORMALLY COVARIANT DIFFERENTIAL OPERATORS 42
1.9 CURVED TRANSLATION AND TRACTOR FAMILIES 46
1.10 HOLOGRAPHIE DUALITY. EXTRINSIC Q-CURVATURE.
ODD ORDER Q-CURVATURE 50
1.11 REVIEW OF THE CONTENTS 55
1.12 SOME FURTHER PERSPECTIVES 58
2 SPACES, ACTIONS, REPRESENTATIONS
AND
CURVATURE
2.1 LIE GROUPS, LIE ALGEBRAS, SPACES AND ACTIONS 63
2.2 STEREOGRAPHIC PROJEETION 67
2.3 POISSON TRANSFORMATIONS AND SPHERICAL PRINEIPAL SERIES 71
2.4 THE NAYATANI METRIC 81
2.5 RIEMANNIAN CURVATURE AND CONFORMAL CHANGE 82
3 CONFORMALLY COVARIANT POWERS OF THE
LAPLACIAN, Q-CURVATURE
AND SCATTERING THEORY
3.1 GJMS-OPERATORS AND Q-CURVATURE 87
3.2 SCATTERING THEORY 91
BIBLIOGRAFISCHE INFORMATIONEN
HTTP://D-NB.INFO/991266161
DIGITALISIERT DURCH
CONTENTS
PANEITZ OPERATOR AND PANEITZ CURVATURE
4.1
P , QI
AN
D THEI
R TRANSFORMATIO
N PROPERTIE
S 106
4.2 TH
E FUNDAMENTA
L IDENTIT
Y FOR TH
E PANEIT
Z CURVATUR
E 108
4.3
QI
AN
D W
4
114
INTERTWINING FAMILIES
5.1 TH
E ALGEBRAIC THEOR
Y 117
5.1.1 EVE
N ORDE
R FAMILIES X
2
JV(A) 117
5.1.2 OD
D ORDE
R FAMILIES
E
2
JV+I(A
)
127
5.1.3
PJV(A
)
AS HOMOMORPHIS
M OF VERMA MODULES 129
5.2 INDUCE
D FAMILIES 131
5.2.1 INDUCTIO
N 131
5.2.2 EVE
N ORDE
R FAMILIES:
D%%( )
AN
D
D%
N
{ )
139
5.2.3 OD
D ORDER FAMILIES:
D%FR
+L
{ )
AN
D
D%
N+1
( )
148
5.2.4 EIGENFUNCTIONS OF
AH
AN
D TH
E FAMILIES D^A
) 154
5.3 SOME LOW ORDE
R EXAMPLE
S 161
5.4 FAMILIES FOR
(R
N
,S
N
-
1
)
165
5.4.1 TH
E FAMILIES
D
B
N
(X)
165
5.4.2
D
(A),
D ( )
AND
D%( )
172
5.4.3 |(0) FOR
N = 4AND(P
3
,R)FO
R
(B
4
,S
3
)
176
5.5 AUTOMORPHIC DISTRIBUTIONS 178
CONFORMALLY COVARIANT FAMILIES
6.1 FUNDAMENTA
L PAIR
S AN
D CRITICA
L FAMILIES 190
6.2 TH
E FAMILY
D
X
{G;
A) 194
6.3
DILGIA)
FOR A SURFACE IN A 3-MANIFOLD 195
6.4 SECOND-ORDER FAMILIES. GENERAL CASE 201
6.5 FAMILIES AN
D TH
E ASYMPTOTIC
S OF EIGENFUNCTIONS 208
6.6 RESIDUE FAMILIES AN
D HOLOGRAPHI
C FORMULAS FOR Q-CURVATUR
E ...
. 214
6.7
D2{G
A) AS A RESIDUE FAMILY 235
6.8
D
S
(H; )
236
6.9 TH
E HOLOGRAPHIC COEFFICIENTS I
2
,
V
AN
D
VQ
239
6.10 TH
E HOLOGRAPHIC FORMULA FOR
Q&
254
6.11 FACTORIZATIO
N IDENTITIE
S FOR RESIDU
E FAMILIES.
RECURSIVE RELATION
S 264
6.12 A RECURSIVE FORMULA FOR
P$.
UNIVERSALITY 318
6.13 RECURSIVE FORMULAS FOR Q
8
AN
D
PS
325
6.14 HOLOGRAPHIC FORMULA FOR CONFORMALLY FLAT METRIC
S 329
6.15 I 4 AS A CONFORMAL INDEX DENSIT
Y 339
6.16 TH
E HOLOGRAPHI
C FORMULA FOR EINSTEI
N METRIC
S 343
6.17 SEMI-HOLONOMIC VERM
A MODULE
S AN
D THEI
R ROLE 356
CONTENTS VII
6.18 ZUCKERMAN TRANSLATION AND
PJV(A)
360
6.19 FROM VERMA MODULES TO TRACTORS 381
6.20 SOME ELEMENTS OF TRACTOR CALCULUS 388
6.21 THE TRACTOR FAMILIES
DJ,(M,
;
G;
A) 403
6.22 SOME RESULTS ON TRACTOR FAMILIES 418
6.23
J
AND FIALKOW S FUNDAMENTAL FORMS 445
6.24 D
2
(G;A) AS A TRACTOR FAMILY 450
6.25 THE FAMILY DF(M,S;G;A
) 455
6.26 THEPAIR(F
3
, 3
3
) 463
BIBLIOGRAPHY
469
INDEX
485
|
any_adam_object | 1 |
author | Juhl, Andreas |
author_facet | Juhl, Andreas |
author_role | aut |
author_sort | Juhl, Andreas |
author_variant | a j aj |
building | Verbundindex |
bvnumber | BV025549562 |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)416413709 (DE-599)BVBBV025549562 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01864nam a2200481 cb4500</leader><controlfield tag="001">BV025549562</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">100417s2009 xx d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N49,0628</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">991266161</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764398996</subfield><subfield code="9">978-3-7643-9899-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783764398996</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12455737</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)416413709</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025549562</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Juhl, Andreas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Families of conformally covariant differential operators, Q-Curvature and holography</subfield><subfield code="c">Andreas Juhl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 488 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">275</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krümmung</subfield><subfield code="0">(DE-588)4128765-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Krümmung</subfield><subfield code="0">(DE-588)4128765-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">275</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">275</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020150083&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020150083</subfield></datafield></record></collection> |
id | DE-604.BV025549562 |
illustrated | Illustrated |
indexdate | 2024-12-20T14:30:09Z |
institution | BVB |
isbn | 9783764398996 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020150083 |
oclc_num | 416413709 |
open_access_boolean | |
owner | DE-11 DE-188 |
owner_facet | DE-11 DE-188 |
physical | XIII, 488 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spellingShingle | Juhl, Andreas Families of conformally covariant differential operators, Q-Curvature and holography Progress in Mathematics Differentialgeometrie (DE-588)4012248-7 gnd Krümmung (DE-588)4128765-4 gnd Differentialoperator (DE-588)4012251-7 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
subject_GND | (DE-588)4012248-7 (DE-588)4128765-4 (DE-588)4012251-7 (DE-588)4128295-4 |
title | Families of conformally covariant differential operators, Q-Curvature and holography |
title_auth | Families of conformally covariant differential operators, Q-Curvature and holography |
title_exact_search | Families of conformally covariant differential operators, Q-Curvature and holography |
title_full | Families of conformally covariant differential operators, Q-Curvature and holography Andreas Juhl |
title_fullStr | Families of conformally covariant differential operators, Q-Curvature and holography Andreas Juhl |
title_full_unstemmed | Families of conformally covariant differential operators, Q-Curvature and holography Andreas Juhl |
title_short | Families of conformally covariant differential operators, Q-Curvature and holography |
title_sort | families of conformally covariant differential operators q curvature and holography |
topic | Differentialgeometrie (DE-588)4012248-7 gnd Krümmung (DE-588)4128765-4 gnd Differentialoperator (DE-588)4012251-7 gnd Riemannscher Raum (DE-588)4128295-4 gnd |
topic_facet | Differentialgeometrie Krümmung Differentialoperator Riemannscher Raum |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020150083&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT juhlandreas familiesofconformallycovariantdifferentialoperatorsqcurvatureandholography |