Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Field arithmetic
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Field arithmetic:
Saved in:
Bibliographic Details
Main Authors: Fried, Michael D. 1942- (Author), Yardēn, Moše 1942- (Author)
Format: Book
Language:English
Published: Berlin Springer [2008]
Edition:Third edition, revised by Moshe Jarden
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge ; volume 11
Subjects:
Pseudoalgebraisch abgeschlossener Körper
Algebraischer Körper
Absoluter Klassenkörper
Proendliche Gruppe
Funktionenkörper
Algebraischer Funktionenkörper
Algebraische Zahlentheorie
Algebraischer Zahlkörper
Links:http://deposit.dnb.de/cgi-bin/dokserv?id=3109440&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539518&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:xxiii, 792 Seiten Illustrationen 235 mm x 155 mm, 1310 gr.
ISBN:9783540772699
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV023355978
003 DE-604
005 20220914
007 t|
008 080620s2008 gw a||| |||| 00||| eng d
015 |a 08,N23,1290  |2 dnb 
016 7 |a 988747138  |2 DE-101 
020 |a 9783540772699  |c Hardcover  |9 978-3-540-77269-9 
024 3 |a 9783540772699 
028 5 2 |a 12204045 
035 |a (OCoLC)244290764 
035 |a (DE-599)DNB988747138 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
044 |a gw  |c XA-DE-BE 
049 |a DE-29T  |a DE-355  |a DE-19  |a DE-11  |a DE-703  |a DE-188 
082 0 |a 512/.3 
084 |a SK 130  |0 (DE-625)143216:  |2 rvk 
084 |a SK 180  |0 (DE-625)143222:  |2 rvk 
084 |a SK 230  |0 (DE-625)143225:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Fried, Michael D.  |d 1942-  |e Verfasser  |0 (DE-588)172081203  |4 aut 
245 1 0 |a Field arithmetic  |c Michael D. Fried, Moshe Jarden 
250 |a Third edition, revised by Moshe Jarden 
264 1 |a Berlin  |b Springer  |c [2008] 
264 4 |c © 2008 
300 |a xxiii, 792 Seiten  |b Illustrationen  |c 235 mm x 155 mm, 1310 gr. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge  |v volume 11 
650 0 7 |a Pseudoalgebraisch abgeschlossener Körper  |0 (DE-588)4132443-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraischer Körper  |0 (DE-588)4141852-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Absoluter Klassenkörper  |0 (DE-588)4132442-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Proendliche Gruppe  |0 (DE-588)4132444-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionenkörper  |0 (DE-588)4155688-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraischer Funktionenkörper  |0 (DE-588)4141850-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Zahlentheorie  |0 (DE-588)4001170-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraischer Zahlkörper  |0 (DE-588)4068537-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraischer Zahlkörper  |0 (DE-588)4068537-8  |D s 
689 0 1 |a Pseudoalgebraisch abgeschlossener Körper  |0 (DE-588)4132443-2  |D s 
689 0 |5 DE-604 
689 1 0 |a Pseudoalgebraisch abgeschlossener Körper  |0 (DE-588)4132443-2  |D s 
689 1 1 |a Absoluter Klassenkörper  |0 (DE-588)4132442-0  |D s 
689 1 2 |a Proendliche Gruppe  |0 (DE-588)4132444-4  |D s 
689 1 |8 1\p  |5 DE-604 
689 2 0 |a Algebraische Zahlentheorie  |0 (DE-588)4001170-7  |D s 
689 2 |8 2\p  |5 DE-604 
689 3 0 |a Algebraischer Funktionenkörper  |0 (DE-588)4141850-5  |D s 
689 3 |8 3\p  |5 DE-604 
689 4 0 |a Funktionenkörper  |0 (DE-588)4155688-4  |D s 
689 4 |8 4\p  |5 DE-604 
689 5 0 |a Algebraischer Körper  |0 (DE-588)4141852-9  |D s 
689 5 |8 5\p  |5 DE-604 
700 1 |a Yardēn, Moše  |d 1942-  |e Verfasser  |0 (DE-588)122073932  |4 aut 
775 0 8 |i Nachgedruckt als  |z 978-3-642-09594-8 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-540-77270-5 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete  |v 3. Folge ; volume 11  |w (DE-604)BV000899194  |9 11 
856 4 2 |q text/html  |u http://deposit.dnb.de/cgi-bin/dokserv?id=3109440&prov=M&dok_var=1&dok_ext=htm  |3 Inhaltstext 
856 4 2 |m Digitalisierung UB Regensburg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539518&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-016539518 

Record in the Search Index

_version_ 1819381935605022720
adam_text Table of Contents Chapter 1. Infinite Galois Theory and Profmite Groups ......1 1.1 Inverse Limits ......................1 1.2 Profinite Groups .....................4 1.3 Infinite Galois Theory ...................9 1.4 The p-adic Integers and the Prüfer Group ......... 12 1.5 The Absolute Galois Group of a Finite Field ........ 15 Exercises ......................... 16 Notes .......................... 18 Chapter 2. Valuations and Linear Disjointness ......... 19 2.1 Valuations, Places, and Valuation Rings .......... 19 2.2 Discrete Valuations ................... 21 2.3 Extensions of Valuations and Places ............ 24 2.4 Integral Extensions and Dedekind Domains ........ 30 2.5 Linear Disjointness of Fields ............... 34 2.6 Separable, Regular, and Primary Extensions ........ 38 2.7 The Imperfect Degree of a Field ............. 44 2.8 Derivatives ...................... 48 Exercises ......................... 50 Notes .......................... 51 Chapter 3. Algebraic Function Fields of One Variable ...... 52 3.1 Function Fields of One Variable ............. 52 3.2 The Riemann-Roch Theorem .............. 54 3.3 Holomorphy Rings ................... 56 3.4 Extensions of Function Fields .............. 59 3.5 Completions ...................... 61 3.6 The Different ..................... 67 3.7 Hyperelliptic Fields ................... 70 3.8 Hyperelliptic Fields with a Rational quadratic Subfield ... 73 Exercises ......................... 75 Notes .......................... 76 Chapter 4. The Riemann Hypothesis for Function Fields ..... 77 4.1 Class Numbers ..................... 77 4.2 Zeta Functions ..................... 79 4.3 Zeta Functions under Constant Field Extensions ...... 81 4.4 The Functional Equation ................ 82 4.5 The Riemann Hypothesis and Degree 1 Prime Divisors ... 84 4.6 Reduction Steps .................... 86 4.7 An Upper Bound .................... 87 4.8 A Lower Bound .................... 89 viii Table of Contents Exercises ......................... 91 Notes .......................... 93 Chapter 5. Plane Curves ................... 95 5.1 Affine and Projective Plane Curves ............ 95 5.2 Points and prime divisors ................ 97 5.3 The Genus of a Plane Curve ............... 99 5.4 Points on a Curve over a Finite Field ........... 104 Exercises ......................... 105 Notes .......................... 106 Chapter 6. The Chebotarev Density Theorem .......... 107 6.1 Decomposition Groups ................. 107 6.2 The Artin Symbol over Global Fields ........... Ill 6.3 Dirichlet Density .................... 113 6.4 Function Fields .................... 115 6.5 Number Fields ..................... 121 Exercises ......................... 129 Notes .......................... 130 Chapter 7. Ultraproducts ................... 132 7.1 First Order Predicate Calculus .............. 132 7.2 Structures ....................... 134 7.3 Models ........................ 135 7.4 Elementary Substructures ................ 137 7.5 Ultrafilters ...................... 138 7.6 Regular Ultrafilters ................... 139 7.7 Ultraproducts ..................... 141 7.8 Regular Ultraproducts ................. 145 7.9 Xonprincipal Ultraproducts of Finite Fields ........ 147 Exercises ......................... 147 Notes .......................... 148 Chapter 8. Decision Procedures ................ 149 8.1 Deduction Theory ................... 149 8.2 Gödel s Completeness Theorem ............. 152 8.3 Primitive Recursive Functions .............. 154 8.4 Primitive Recursive Relations .............. 156 8.5 Recursive Functions .................. 157 8.6 Recursive and Primitive Recursive Procedures ....... 159 8.7 A Reduction Step in Decidability Procedures ....... 160 Exercises ......................... 161 Notes .......................... 162 Table of Contents ix Chapter 9. Algebraically Closed Fields ............. 163 9.1 Elimination of Quantifiers ................ 163 9.2 A Quantifiers Elimination Procedure ........... 165 9.3 Effectiveness ...................... 168 9.4 Applications ..................... . 169 Exercises ......................... 170 Notes .......................... 170 Chapter 10. Elements of Algebraic Geometry .......... 172 10.1 Algebraic Sets .................... 172 10.2 Varieties ....................... 175 10.3 Substitutions in Irreducible Polynomials ......... 176 10.4 Rational Maps .................... 178 10.5 Hyperplane Sections .................. 180 10.6 Descent ....................... 182 10.7 Projective Varieties .................. 185 10.8 About the Language of Algebraic Geometry ....... 187 Exercises ......................... 190 Notes .......................... 191 Chapter 11. Pseudo Algebraically Closed Fields ......... 192 11.1 PAC Fields ..... ................. 192 11.2 Reduction to Plane Curves ............... 193 11.3 The PAC Property is an Elementary Statement ...... 199 11.4 PAC Fields of Positive Characteristic .......... 201 11.5 PAC Fields with Valuations ............... 203 11.6 The Absolute Galois Group of a PAC Field ........ 207 11.7 A non-PAC Field К with ϋΓίηη РАС ........... 211 Exercises ......................... 217 Notes .......................... 218 Chapter 12. Hilbertian Fields ................. 219 12.1 Hilbert Sets and Reduction Lemmas ........... 219 12.2 Hilbert Sets under Separable Algebraic Extensions ..... 223 12.3 Purely Inseparable Extensions ............. 224 12.4 Imperfect fields .................... 228 Exercises ......................... 229 Notes .......................... 230 Chapter 13. The Classical Hilbertian Fields ........... 231 13.1 Further Reduction ................... 231 13.2 Function Fields over Infinite Fields ........... 236 13.3 Global Fields ..................... 237 13.4 Hilbertian Rings ................... 241 13.5 Hilbertianity via Coverings ............... 244 x Table of Contents 13.0 Non-Hilbertian (/-Hilbertian Fields ............ 248 13.7 Twisted Wreath Products ............... 252 13.8 The Diamond Theorem ................ 258 13.9 Weissauers Theorem ................. 262 Exercises ......................... 264 Notes .......................... 266 Chapter 14. Nonstandard Structures .............. 267 14.1 Higher Order Predicate Calculus ............ 267 14.2 Enlargements ..................... 268 14.3 Concurrent Relations ................. 270 14.4 The Existence of Enlargements ............. 272 14.5 Examples ....................... 274 Exercises ......................... 275 Notes .......................... 276 Chapter 15. Nonstandard Approach to Hubert s Irreducibility Theorem .... 277 15.1 Criteria for Hilbertianity ................ 277 15.2 Arithmetical Primes Versus Functional Primes ...... 279 15.3 Fields with the Product Formula ............ 281 15.4 Generalized Krull Domains ............... 283 15.5 Examples ....................... 286 Exercises ......................... 289 Notes .......................... 290 Chapter 16. Galois Groups over Hilbertian Fields ........ 291 16.1 Galois Groups of Polynomials .............. 291 16.2 Stable Polynomials .................. 294 16.3 Regular Realization of Finite Abelian Groups ....... 298 16.4 Split Embedding Problems with Abelian Kernels ..... 302 16.5 Embedding Quadratic Extensions in Z/2raZ-extensions . . . 306 16.6 Zp-Extensions of Hilbertian Fields ............ 308 16.7 Symmetric and Alternating Groups over Hilbertian Fields . 315 16.8 GAR-Realizations ................... 321 16.9 Embedding Problems over Hilbertian Fields ....... 325 16.10 Finitely Generated Profinite Groups .......... 328 16.11 Abelian Extensions of Hilbertian Fields ......... 332 16.12 Regularity of Finite Groups over Complete Discrete Valued Fields .... 334 Exercises ......................... 335 Notes .......................... 336 Chapter 17. Free Profinite Groups ............... 338 17.1 The Rank of a Profinite Group ............. 338 Table of Contents xi 17.2 Profinite Completions of Groups ............ 340 17.3 Formations of Finite Groups .............. 344 17.4 Free pro -С Groups ................... 346 17.5 Subgroups of Free Discrete Groups ........... 350 17.6 Open Subgroups of Free Profinite Groups ........ 358 17.7 An Embedding Property ................ 360 Exercises ......................... 361 Notes .......................... 362 Chapter 18. The Haar Measure ................ 363 18.1 The Haar Measure of a Profinite Group ......... 363 18.2 Existence of the Haar Measure ............. 366 18.3 Independence. ..................... 370 18.4 Cartesian Product of Haar Measures ........... 376 18.5 The Haar Measure of the Absolute Galois Group ..... 378 18.6 The PAC Nullstellensatz ................ 380 18.7 The Bottom Theorem ................. 382 18.8 PAC Fields over Uncountable Hilbertian Fields ...... 386 18.9 On the Stability of Fields ................ 390 18.10 PAC Galois Extensions of Hilbertian Fields ....... 394 18.11 Algebraic Groups ................... 397 Exercises ......................... 400 Notes .......................... 401 Chapter 19. Effective Field Theory and Algebraic Geometry . . . 403 19.1 Presented Rings and Fields ............... 403 19.2 Extensions of Presented Fields ............. 406 19.3 Galois Extensions of Presented Fields .......... 411 19.4 The Algebraic and Separable Closures of Presented Fields . 412 19.5 Constructive Algebraic Geometry ............ 413 19.6 Presented Rings and Constructible Sets ......... 422 19.7 Basic Normal Stratification ............... 425 Exercises ......................... 427 Notes .......................... 428 Chapter 20. The Elementary Theory of е -Free PAC Fields .... 429 20.1 Kj-Saturated PAC Fields ................ 429 20.2 The Elementary Equivalence Theorem of Hi-Saturated PAC Fields ....... 430 20.3 Elementary Equivalence of PAC Fields .......... 433 20.4 On е -Free PAC Fields ................. 436 20.5 The Elementary Theory of Perfect е -Free PAC Fields ... 438 20.6 The Probable Truth of a Sentence ............ 440 20.7 Change of Base Field ................. 442 20.8 The Fields Ks(au...,ae) ............... 444 xii Table of Contents 20.9 The Transfer Theorem ................. 440 20.10 The Elementary Theory of Finite Fields ......... 448 Exercises ......................... 451 Notes .......................... 453 Chapter 21. Problems of Arithmetical Geometry ........ 454 21.1 The Decomposition-Intersection Procedure ........ 454 21.2 Ci-Fields and Weakly Q-Fields ............. 455 21.3 Perfect PAC Fields which are d ............ 460 21.4 The Existential Theory of PAC Fields .......... 462 21.5 Kronecker Classes of Number Fields ........... 463 21.6 Davenport s Problem ................. 467 21.7 On permutation Groups ................ 472 21.8 Schurs Conjecture ................... 479 21.9 Generalized Carlitz s Conjecture ............. 489 Exercises ......................... 493 Notes .......................... 495 Chapter 22. Projective Groups and Frattini Covers ....... 497 22.1 The Frattini Groups of a Profinite Group ......... 497 22.2 Cartesian Squares ................... 499 22.3 On C-Projective Groups ................ 502 22.4 Projective Groups ................... 506 22.5 Frattini Covers .................... 508 22.6 The Universal Frattini Cover .............. 513 22.7 Projective Pro-p-Groups ................ 515 22.8 Supernatural Numbers ................. 520 22.9 The Sylow Theorems ................. 522 22.10 On Complements of Normal Subgroups ......... 524 22.11 The Universal Frattini p-Cover ............. 528 22.12 Examples of Universal Frattini p-Covers ......... 532 22.13 The Special Linear Group SL(2,ZP) .......... 534 22.14 The General Linear Group GL(2,Zp) .......... 537 Exercises ......................... 539 Notes .......................... 542 Chapter 23. PAC Fields and Projective Absolute Galois Groups . . 544 23.1 Projective Groups as Absolute Galois Groups ....... 544 23.2 Countably Generated Projective Groups ......... 546 23.3 Perfect PAC Fields of Bounded Corank ......... 549 23.4 Basic Elementary Statements .............. 550 23.5 Reduction Steps .................... 554 23.6 Application of Ultraproducts .............. 558 Exercises ......................... 561 Notes .......................... 561 Table of Contents xiii Chapter 24. Frobenius Fields ................. 562 24.1 The Field Crossing Argument .............. 562 24.2 The Beckmann-Black Problem ............. 565 24.3 The Embedding Property and Maximal Frattini Covers . . 567 24.4 The Smallest Embedding Cover of a Prorinite Group .... 569 24.5 A Decision Procedure ................. 574 24.6 Examples ....................... 576 24.7 Non-pro j ective Smallest Embedding Cover ........ 579 24.8 A Theorem of Iwasawa ................. 581 24.9 Free Profinite Groups of at most Countable Rank ..... 583 24.10 Application of the Nielsen-Schreier Formula ....... 586 Exercises ......................... 591 Notes .......................... 592 Chapter 25. Free Profinite Groups of Infinite Rank ....... 594 25.1 Characterization of Free Profinite Groups by Embedding Problems .... 595 25.2 Applications of Theorem 25.1.7 ............. 601 25.3 The Pro -С Completion of a Free Discrete Group ...... 604 25.4 The Group Theoretic Diamond Theorem ......... 606 25.5 The Melnikov Group of a Profinite Group ........ 613 25.6 Homogeneous Pro -С Groups .............. 615 25.7 The S-rank of Closed Normal Subgroups ......... 620 25.8 Closed Normal Subgroups with a Basis Element ...... 623 25.9 Accessible Subgroups ................. 625 Notes .......................... 633 Chapter 26. Random Elements in Free Profinite Groups ..... 635 26.1 Random Elements in a Free Profinite Group ....... 635 26.2 Random Elements in Free pio-p Groups ......... 640 26.3 Random е -tuples in Żn ................. 642 26.4 On the Index of Normal Subgroups Generated by Random Elements ..... 646 26.5 Freeness of Normal Subgroups Generated by Random Elements .... 651 Notes .......................... 654 Chapter 27. Omega-Free PAC Fields .............. 655 27.1 Model Companions .................. 655 27.2 The Model Companion in an Augmented Theory of Fields . 659 27.3 New Non-Classical Hilbertian Fields ........... 664 27.4 An abundance of ω -Free PAC Fields ........... 667 Notes .......................... 670 xiv Table of Contents Chapter 28. Uiidecidability .................. 671 28.1 Turing Machines ................... 671 28.2 Computation of Functions by Turing Machines ...... 672 28.3 Recursive Inseparability of Sets of Turing Machines .... 676 28.4 The Predicate Calculus ................ 679 28.5 Undecidability in the Theory of Graphs ......... 682 28.6 Assigning Graphs to Profinite Groups .......... 687 28.7 The Graph Conditions ................. 688 28.8 Assigning Profinite Groups to Graphs .......... 690 28.9 Assigning Fields to Graphs ............... 694 28.10 Interpretation of the Theory of Graphs in the Theory of Fields ... 694 Exercises ......................... 697 Notes .......................... 697 Chapter 29. Algebraically Closed Fields with Distinguished Automorphisms . . 698 29.1 The Base Field К ................... 698 29.2 Coding in РАС Fields with Monadic Quantifiers ...... 700 29.3 The Theory of Almost all {Ќ,аи...,ае) ѕ ........ 704 29.4 The Probability of Truth Sentences ........... 706 Chapter 30. Galois Stratification ............... 708 30.1 The Artin Symbol ................... 708 30.2 Conjugacy Domains under Projection .......... 710 30.3 Normal Stratification ................. 715 30.4 Elimination of One Variable .............. 717 30.5 The Complete Elimination Procedure .......... 720 30.6 Model-Theoretic Applications .............. 722 30.7 A Limit of Theories .................. 725 Exercises ......................... 726 Notes .......................... 729 Chapter 31. Galois Stratification over Finite Fields ....... 730 31.1 The Elementary Theory of Frobenius Fields ....... 730 31.2 The Elementary Theory of Finite Fields ......... 735 31.3 Near Rationality of the Zeta Function of a Galois Formula . 739 Exercises ......................... 748 Notes .......................... 750 Chapter 32. Problems of Field Arithmetic ........... 751 32.1 Open Problems of the First Edition ........... 751 32.2 Open Problems of the Second Edition .......... 754 32.3 Open problems .................... 758 Table of Contents xv References .........................761 Index ...........................780
any_adam_object 1
author Fried, Michael D. 1942-
Yardēn, Moše 1942-
author_GND (DE-588)172081203
(DE-588)122073932
author_facet Fried, Michael D. 1942-
Yardēn, Moše 1942-
author_role aut
aut
author_sort Fried, Michael D. 1942-
author_variant m d f md mdf
m y my
building Verbundindex
bvnumber BV023355978
classification_rvk SK 130
SK 180
SK 230
ctrlnum (OCoLC)244290764
(DE-599)DNB988747138
dewey-full 512/.3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.3
dewey-search 512/.3
dewey-sort 3512 13
dewey-tens 510 - Mathematics
discipline Mathematik
edition Third edition, revised by Moshe Jarden
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03794nam a2200817 cb4500</leader><controlfield tag="001">BV023355978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220914 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">080620s2008 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N23,1290</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">988747138</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540772699</subfield><subfield code="c">Hardcover</subfield><subfield code="9">978-3-540-77269-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540772699</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12204045</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)244290764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB988747138</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fried, Michael D.</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172081203</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Field arithmetic</subfield><subfield code="c">Michael D. Fried, Moshe Jarden</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition, revised by Moshe Jarden</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2008]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 792 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">235 mm x 155 mm, 1310 gr.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge</subfield><subfield code="v">volume 11</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoalgebraisch abgeschlossener Körper</subfield><subfield code="0">(DE-588)4132443-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Körper</subfield><subfield code="0">(DE-588)4141852-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Absoluter Klassenkörper</subfield><subfield code="0">(DE-588)4132442-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proendliche Gruppe</subfield><subfield code="0">(DE-588)4132444-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenkörper</subfield><subfield code="0">(DE-588)4155688-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Zahlkörper</subfield><subfield code="0">(DE-588)4068537-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraischer Zahlkörper</subfield><subfield code="0">(DE-588)4068537-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pseudoalgebraisch abgeschlossener Körper</subfield><subfield code="0">(DE-588)4132443-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pseudoalgebraisch abgeschlossener Körper</subfield><subfield code="0">(DE-588)4132443-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Absoluter Klassenkörper</subfield><subfield code="0">(DE-588)4132442-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Proendliche Gruppe</subfield><subfield code="0">(DE-588)4132444-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Funktionenkörper</subfield><subfield code="0">(DE-588)4155688-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Algebraischer Körper</subfield><subfield code="0">(DE-588)4141852-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yardēn, Moše</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122073932</subfield><subfield code="4">aut</subfield></datafield><datafield tag="775" ind1="0" ind2="8"><subfield code="i">Nachgedruckt als</subfield><subfield code="z">978-3-642-09594-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-77270-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">3. Folge ; volume 11</subfield><subfield code="w">(DE-604)BV000899194</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3109440&amp;prov=M&amp;dok_var=1&amp;dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=016539518&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016539518</subfield></datafield></record></collection>
id DE-604.BV023355978
illustrated Illustrated
indexdate 2024-12-20T13:14:22Z
institution BVB
isbn 9783540772699
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-016539518
oclc_num 244290764
open_access_boolean
owner DE-29T
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-11
DE-703
DE-188
owner_facet DE-29T
DE-355
DE-BY-UBR
DE-19
DE-BY-UBM
DE-11
DE-703
DE-188
physical xxiii, 792 Seiten Illustrationen 235 mm x 155 mm, 1310 gr.
publishDate 2008
publishDateSearch 2008
publishDateSort 2008
publisher Springer
record_format marc
series Ergebnisse der Mathematik und ihrer Grenzgebiete
series2 Ergebnisse der Mathematik und ihrer Grenzgebiete : 3. Folge
spellingShingle Fried, Michael D. 1942-
Yardēn, Moše 1942-
Field arithmetic
Ergebnisse der Mathematik und ihrer Grenzgebiete
Pseudoalgebraisch abgeschlossener Körper (DE-588)4132443-2 gnd
Algebraischer Körper (DE-588)4141852-9 gnd
Absoluter Klassenkörper (DE-588)4132442-0 gnd
Proendliche Gruppe (DE-588)4132444-4 gnd
Funktionenkörper (DE-588)4155688-4 gnd
Algebraischer Funktionenkörper (DE-588)4141850-5 gnd
Algebraische Zahlentheorie (DE-588)4001170-7 gnd
Algebraischer Zahlkörper (DE-588)4068537-8 gnd
subject_GND (DE-588)4132443-2
(DE-588)4141852-9
(DE-588)4132442-0
(DE-588)4132444-4
(DE-588)4155688-4
(DE-588)4141850-5
(DE-588)4001170-7
(DE-588)4068537-8
title Field arithmetic
title_auth Field arithmetic
title_exact_search Field arithmetic
title_full Field arithmetic Michael D. Fried, Moshe Jarden
title_fullStr Field arithmetic Michael D. Fried, Moshe Jarden
title_full_unstemmed Field arithmetic Michael D. Fried, Moshe Jarden
title_short Field arithmetic
title_sort field arithmetic
topic Pseudoalgebraisch abgeschlossener Körper (DE-588)4132443-2 gnd
Algebraischer Körper (DE-588)4141852-9 gnd
Absoluter Klassenkörper (DE-588)4132442-0 gnd
Proendliche Gruppe (DE-588)4132444-4 gnd
Funktionenkörper (DE-588)4155688-4 gnd
Algebraischer Funktionenkörper (DE-588)4141850-5 gnd
Algebraische Zahlentheorie (DE-588)4001170-7 gnd
Algebraischer Zahlkörper (DE-588)4068537-8 gnd
topic_facet Pseudoalgebraisch abgeschlossener Körper
Algebraischer Körper
Absoluter Klassenkörper
Proendliche Gruppe
Funktionenkörper
Algebraischer Funktionenkörper
Algebraische Zahlentheorie
Algebraischer Zahlkörper
url http://deposit.dnb.de/cgi-bin/dokserv?id=3109440&prov=M&dok_var=1&dok_ext=htm
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016539518&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000899194
work_keys_str_mv AT friedmichaeld fieldarithmetic
AT yardenmose fieldarithmetic
  • Availability

‌

Order via interlibrary loan Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline