Machine Learning for audio, image and video analysis: theory and applications
Gespeichert in:
Beteiligte Personen: | , |
---|---|
Format: | Medienkombination Buch |
Sprache: | Englisch |
Veröffentlicht: |
London
Springer
2008
|
Schriftenreihe: | Advanced Information and Knowledge Processing
|
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016406357&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | XVI, 494 S. Ill., graph. Darst. |
ISBN: | 9781848000063 9781848000070 |
Internformat
MARC
LEADER | 00000npm a2200000 c 4500 | ||
---|---|---|---|
001 | BV023220446 | ||
003 | DE-604 | ||
005 | 20090901 | ||
007 | ou | ||
008 | 080318s2008 xx eng d | ||
015 | |a 07,N28,0021 |2 dnb | ||
016 | 7 | |a 984553460 |2 DE-101 | |
020 | |a 9781848000063 |c : ca. EUR 85.55 (freier Pr.), ca. sfr 131.00 (freier Pr.) |9 978-1-84800-006-3 | ||
020 | |a 9781848000070 |c : ca. EUR 85.55 (freier Pr.), ca. sfr 131.00 (freier Pr.) |9 978-1-84800-007-0 | ||
024 | 3 | |a 9781848000063 | |
028 | 5 | 2 | |a 11679592 |
035 | |a (OCoLC)635181084 | ||
035 | |a (DE-599)DNB984553460 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-N2 | ||
084 | |a ST 304 |0 (DE-625)143653: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Camastra, Francesco |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine Learning for audio, image and video analysis |b theory and applications |c Francesco Camastra ; Alessandro Vinciarelli |
264 | 1 | |a London |b Springer |c 2008 | |
300 | |a XVI, 494 S. |b Ill., graph. Darst. | ||
490 | 0 | |a Advanced Information and Knowledge Processing | |
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Videobearbeitung |0 (DE-588)4536854-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildanalyse |0 (DE-588)4145391-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitales Tonsignal |0 (DE-588)4229078-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Maschinelles Sehen |0 (DE-588)4129594-8 |D s |
689 | 0 | 3 | |a Bildanalyse |0 (DE-588)4145391-8 |D s |
689 | 0 | 4 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 5 | |a Videobearbeitung |0 (DE-588)4536854-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | 2 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |D s |
689 | 1 | 3 | |a Digitales Tonsignal |0 (DE-588)4229078-8 |D s |
689 | 1 | 4 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 1 | 5 | |a Videobearbeitung |0 (DE-588)4536854-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Vinciarelli, Alessandro |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016406357&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016406357 |
Datensatz im Suchindex
_version_ | 1819307092404600832 |
---|---|
adam_text | Contents
1
Introduction
............................................... 1
1.1
Two Fundamental Questions
............................ 1
1.1.1
Why Should One Read The Book?
................ 1
1.1.2
What Is the Book About?
....................... 2
1.2
The Structure of the Book
.............................. 4
1.2.1
Part I: From Perception to Computation
........... 4
1.2.2
Part II: Machine Learning
....................... 5
1.2.3
Part III: Applications
........................... 6
1.2.4
Appendices
.................................... 7
1.3
How to Read This Book
................................ 7
1.3.1
Background and Learning Objectives
.............. 8
1.3.2
Difficulty Level
................................. 8
1.3.3
Problems
...................................... 8
1.3.4
Software
....................................... 9
1.4
Reading Tracks
........................................ 9
Part I From. Perception to Computation
2
Audio Acquisition, Representation and Storage
............ 13
2.1
Introduction
.......................................... 13
2.2
Sound Physics, Production and Perception
................ 15
2.2.1
Acoustic Waves Physics
......................... 15
2.2.2
Speech Production
.............................. 18
2.2.3
Sound Perception
............................... 20
2.3
Audio Acquisition
...................................... 22
2.3.1
Sampling and Aliasing
........................... 23
2.3.2
The Sampling Theorem**
........................ 25
2.3.3
Linear Quantization
............................. 27
2.3.4
Nonuniform
Scalar Quantization
.................. 30
2.4
Audio Encoding and Storage Formats
.................... 32
VIII Contents
2.4.1
Linear PCM
and Compact Discs
.................. 32
2.4.2
MPEG Digital Audio Coding
..................... 34
2.4.3
AAC Digital Audio Coding
...................... 35
2.4.4
Perceptual Coding
.............................. 36
2.5
Time-Domain Audio Processing
......................... 38
2.5.1
Linear and Time-Invariant Systems
............... 38
2.5.2
Short-Term Analysis
............................ 40
2.5.3
Time-Domain Measures
......................... 41
Problems
.................................................... 46
References
..................................................... 49
3
Image and Video Acquisition, Representation and Storage
. 51
3.1
Introduction
.......................................... 51
3.2
Human Eye Physiology
................................. 52
3.2.1
Structure of the Human Eye
..................... 52
3.3
Image Acquisition Devices
.............................. 54
3.3.1
Digital Camera
................................. 54
3.4
Color Representation
................................... 57
3.4.1
Human Color Perception
........................ 57
3.4.2
Color Models
................................... 59
3.5
Image Formats
........................................ 66
3.5.1
Image File Format Standards
..................... 66
3.5.2
JPEG Standard
................................ 68
3.6
Video Principles
....................................... 72
3.7
MPEG Standard
....................................... 73
3.7.1
Further MPEG Standards
....................... 75
3.8
Conclusions
........................................... 77
Problems
.................................................... 78
References
..................................................... 79
Part II Machine Learning
4
Machine Learning
.......................................... 83
4.1
Introduction
.......................................... 83
4.2
Taxonomy of Machine Learning
.......................... 84
4.2.1
Rote Learning
.................................. 84
4.2.2
Learning from Instruction
........................ 85
4.2.3
Learning by Analogy
............................ 85
4.3
Learning from Examples
................................ 85
4.3.1
Supervised Learning
............................ 86
4.3.2
Reinforcement Learning
......................... 86
4.3.3
Unsupervised Learning
.......................... 87
Contents
IX
4.4
Conclusions
........................................... 88
References
..................................................... 89
5
Bayesian Theory of Decision
............................... 91
5.1
Introduction
.......................................... 91
5.2
Bayes
Decision Rule
.................................... 92
5.3
Bayes
Classifier*
....................................... 95
5.4
Loss Function
......................................... 96
5.4.1
Binary Classification
............................ 98
5.5
Zero-One Loss Function
................................ 99
5.6
Discriminant Functions
.................................100
5.6.1
Binary Classification Case
.......................101
5.7
Gaussian Density
......................................101
5.7.1
Univariate Gaussian Density
.....................102
5.7.2
Multivariate Gaussian Density
....................102
5.7.3
Whitening Transformation
.......................104
5.8
Discriminant Functions for Gaussian Likelihood
............106
5.8.1
Features Are Statistically Independent
............106
5.8.2
Covariance Matrix Is The Same for All Classes
.....107
5.8.3
Covariance Matrix Is Not the Same for All Classes
.. 109
5.9
Receiver Operating Curves
..............................109
5.10
Conclusions
...........................................
Ill
Problems
....................................................112
References
.....................................................115
6
Clustering Methods
........................................117
6.1
Introduction
..........................................117
6.2
Expectation and Maximization Algorithm*
................119
6.2.1
Basic EM*
.....................................120
6.3
Basic Notions and Terminology
..........................122
6.3.1 Codebooks
and Codevectors
......................122
6.3.2
Quantization Error Minimization
.................124
6.3.3
Entropy Maximization
...........................124
6.3.4
Vector Quantization
.............................125
6.4
K-Means
..............................................127
6.4.1
Batch K-Means
.................................128
6.4.2
Online K-Means
................................129
6.4.3
K-Means Software Packages
......................132
6.5
Self-Organizing Maps
...................................132
6.5.1
SOM
Software Packages
.........................134
6.5.2
SOM
Drawbacks
................................134
6.6
Neural Gas and Topology Representing Network
...........134
6.6.1
Neural Gas
....................................135
X
Contents
6.6.2
Topology Representing Network
..................135
6.6.3
Neural Gas and
TRN
Software Package
............137
6.6.4
Neural Gas and
TRN
Drawbacks
.................137
6.7
General Topographic Mapping*
..........................137
6.7.1
Latent Variables*
...............................137
6.7.2
Optimization by EM Algorithm*
..................139
6.7.3
GTM versus
SOM*
.............................140
6.7.4
GTM Software Package
..........................141
6.8
Fuzzy Clustering Algorithms
............................141
6.8.1
FCM
..........................................142
6.9
Hierarchical Clustering
.................................142
6.10
Conclusion
............................................144
Problems
....................................................145
References
.....................................................147
7
Foundations of Statistical Learning
and Model Selection
.......................................149
7.1
Introduction
..........................................149
7.2
Bias-Variance Dilemma
.................................150
7.2.1
Bias-Variance Dilemma for Regression
.............150
7.2.2
Bias-Variance Decomposition for Classification*
.... 151
7.3
Model Complexity
.....................................153
7.4
VC Dimension and Structural Risk Minimization
..........156
7.5
Statistical Learning Theory*
............................159
7.5.1
Vapnik-Chervonenkis Theory
.....................161
7.6
AIC and
BIC
Criteria
..................................163
7.6.1
Akaiké
Information Criterion
.....................163
7.6.2
Bayesian Information Criterion
...................164
7.7
Minimum Description Length Approach
..................165
7.8
Crossvalidation
........................................166
7.8.1
Generalized Crossvalidation
......................166
7.9
Conclusion
............................................168
Problems
....................................................168
References
.....................................................171
8
Supervised Neural Networks
and Ensemble Methods
....................................173
8.1
Introduction
..........................................173
8.2
Artificial Neural Networks and Neural Computation
........174
8.3
Artificial Neurons
......................................175
8.4
Connections and Network Architectures
..................179
8.5
Single-Layer Networks
..................................180
Contents
XI
8.5.1 Linear
Discriminant
Functions and Single-Layer
Networks
......................................181
8.5.2
Linear Discriminants and the Logistic Sigmoid
.....182
8.5.3
Generalized Linear Discriminants and the PerceptronlSS
8.Q Multilayer Networks
....................................186
8.6.1
The Multilayer Perceptron
.......................186
8.7
Multilayer Networks Training
............................188
8.7.1
Error Back-Propagation for Feed-Forwards Networks*188
8.7.2
Parameter Update: The Error Surface
.............190
8.7.3
Parameters Update: The Gradient Descent*
........192
8.7.4
The Torch Package
..............................194
8.8
Learning Vector Quantization
...........................194
8.8.1
The LVQ-PAK Software Package
.................196
8.9
Ensemble Methods
.....................................197
8.9.1
Classifier Diversity and Ensemble Performance*
__. 198
8.9.2
Creating Ensemble of Diverse Classifiers
...........200
8.10
Conclusions
...........................................204
Problems
....................................................204
References
.....................................................207
9
Kernel Methods
............................................211
9.1
Introduction
..........................................211
9.2 Lagrange
Method and
Kuhn
Tucker Theorem
.............213
9.2.1 Lagrange
Multipliers Method
.....................213
9.2.2 Kuhn
Tucker Theorem
..........................215
9.3
Support Vector Machines for Classification
................216
9.3.1
Optimal
Hyperplane
Algorithm
...................217
9.3.2
Support Vector Machine Construction
.............220
9.3.3
Algorithmic Approaches to Solve Quadratic
Programming
..................................222
9.3.4
Sequential Minimal Optimization
.................223
9.3.5
Other Optimization Algorithms
...................225
9.3.6
SVM and Regularization Methods*
...............226
9.4
Multiclass Support Vector Machines
......................228
9.4.1
One-versus-Rest Method
.........................228
9.4.2
One-versus-One Method
.........................229
9.4.3
Other Methods
.................................229
9.5
Support Vector Machines for Regression
..................229
9.5.1
Regression with Quadratic
е
-Insensitive Loss
.......230
9.5.2
Kernel Ridge Regression
.........................233
9.5.3
Regression with Linear
є
-Insensitive
Loss
..........235
9.5.4
Other Approaches to Support Vector Regression
___236
9.6
Gaussian Processes
.....................................237
9.6.1
Regression with Gaussian Processes
...............238
XII Contents
9.7 Kernel
Fisher Discriminant
..............................239
9.7.1
Fisher s Linear Discriminant
.....................239
9.7.2
Fisher Discriminant in Feature Space
..............240
9.8
Kernel PCA
...........................................242
9.8.1
Centering in Feature Space
.......................243
9.9
One-Class SVM
.......................................245
9.9.1
One-Class SVM Optimization
....................247
9.10
Kernel Clustering Methods
..............................249
9.10.1
Kernel K-Means
................................249
9.10.2
One-Class SVM Extensions
......................251
9.10.3
Spectral Clustering
.............................252
9.11
Software Packages
.....................................254
9.12
Conclusion
............................................255
Problems
....................................................256
References
.....................................................259
10
Markovian Models for Sequential Data
.....................265
10.1
Introduction
..........................................265
10.2
Hidden Markov Models
.................................266
10.2.1
Emission Probability Functions
...................269
10.3
The Three Problems
...................................270
10.4
The Likelihood Problem and the Trellis**
.................271
10.5
The Decoding Problem**
...............................274
10.6
The Learning Problem**
................................278
10.6.1
Parameter Initialization
.........................279
10.6.2
Estimation of the Initial State Probabilities
........280
10.6.3
Estimation of the Transition Probabilities
..........280
10.6.4
Emission Probability Function Parameters
Estimation
.....................................281
10.7
HMM
Variants
........................................284
10.8
iV-gram Models and Statistical Language Modeling
........286
10.8.1
JV-gram Models
................................287
10.8.2
The Perplexity
.................................287
10.8.3
iV-grams Parameter Estimation
...................288
10.8.4
The Sparseness Problem and the Language Case
___289
10.9
Discounting and Smoothing Methods
for iV-gram Models**
..................................292
10.9.1
The Leaving-One-Out Method
....................292
10.9.2
The Turing Good Estimates
......................294
10.9.3
Katz s Disconting Model
.........................295
10.10
Building a Language Model with iV-grams
................296
Problems
....................................................297
References
.....................................................301
Contents XIII
11 Feature
Extraction
Methods and Manifold Learning
Methods
...................................................305
11.1
Introduction
..........................................305
11.2
The Curse of Dimensionality*
...........................307
11.3
Data Dimensionality
...................................308
11.3.1
Local Methods
.................................308
11.3.2
Global Methods
................................309
11.4
Principal Component Analysis
...........................313
11.4.1
Nonlinear Principal Component Analysis
..........315
11.5
Independent Component Analysis
........................316
11.5.1
Statistical Independence
.........................318
11.5.2
ICA
Estimation
................................318
11.5.3
ICA
by Mutual Information Minimization
.........322
11.5.4
FastICA Algorithm
.............................323
11.6
Multidimensional Scaling Methods
.......................325
11.6.1
Sammon s Mapping
.............................325
11.7
Manifold Learning
.....................................326
11.7.1
The Manifold Learning Problem
..................327
11.7.2 Isomap........................................328
11.7.3
Locally Linear Embedding
.......................329
11.7.4
Laplacian Eigenmaps
............................331
11.8
Conclusion
............................................333
Problems
....................................................333
References
.....................................................337
Part III Applications
12
Speech and Handwriting Recognition
......................345
12.1
Introduction
..........................................345
12.2
The General Approach
.................................346
12.3
The Front End
........................................349
12.3.1
The Handwriting Front End
......................349
12.3.2
The Speech Front End
..........................351
12.4
HMM
Training
........................................353
12.4.1
Lexicon and Training Set
........................353
12.4.2
Hidden Markov Models Training
..................355
12.5
Recognition and Performance Measures
...................356
12.5.1
Recognition
....................................356
12.5.2
Performance Measurement
.......................357
12.6
Recognition Experiments
...............................359
12.6.1
Lexicon Selection
...............................360
12.6.2
JV-gram Model Performance
......................361
12.6.3
Cambridge Database Results
.....................363
XIV Contents
12.6.4
IAM
Database Results
..........................366
12.7
Speech Recognition Results
.............................367
12.8
Applications
..........................................368
12.8.1
Applications of Handwriting Recognition
..........369
12.8.2
Applications of Speech Recognition
...............371
References
.....................................................373
13
Automatic Face Recognition
...............................381
13.1
Introduction
..........................................381
13.2
Face Recognition: General Approach
.....................383
13.3
Face Detection and Localization
.........................385
13.3.1
Face Segmentation and Normalization
with TorchVision
...............................387
13.4
Lighting Normalization
.................................387
13.4.1
Center/Surround Retinex
........................388
13.4.2
Gross and Brajovic s Algorithm
..................389
13.4.3
Normalization with TorchVision
..................389
13.5
Feature Extraction
.....................................390
13.5.1
Holistic Approaches
.............................390
13.5.2
Local Approaches
...............................392
13.5.3
Feature Extraction with TorchVision
..............393
13.6
Classification
..........................................397
13.7
Performance Assessment
................................399
13.7.1
The FERET Database
..........................400
13.7.2
The FRVT database
............................401
13.8
Experiments
..........................................402
13.8.1
Data and Experimental Protocol
..................402
13.8.2
Euclidean Distance-Based Classifier
...............403
13.8.3
SVM-Based Classification
........................405
References
.....................................................407
14
Video Segmentation and Keyframe Extraction
.............413
14.1
Introduction
..........................................413
14.2
Applications of Video Segmentation
......................414
14.3
Shot Boundary Detection
...............................416
14.3.1
Pixel-Based Approaches
.........................417
14.3.2
Block-Based Approaches
.........................418
14.3.3
Histogram-Based Approaches
.....................420
14.3.4
Clustering-Based Approaches
.....................420
14.3.5
Performance Measures
...........................422
14.4
Shot Boundary Detection with Torchvision
................423
14.5
Keyframe Extraction
...................................424
14.6
Keyframe Extraction with Torchvision and Torch
.......... 426
Contents
XV
References
.....................................................427
Part IV Appendices
A Statistics
...................................................433
A.I Fundamentals
.........................................433
A.
1.1
Probability and Relative Frequency
...............433
A.1.2 The Sample Space
..............................434
A.1.3 The Addition Law
..............................434
A.1.4 Conditional Probability
..........................437
A.1.5 Statistical Independence
.........................438
A.2 Random Variables
.....................................439
A.2.1 Fundamentals
..................................439
A.2.2 Mathematical Expectation
.......................441
A.
2.3
Variance and Covariance
.........................442
В
Signal Processing
..........................................445
B.I Introduction
..........................................445
B.2 The Complex Numbers
.................................445
B.3 The ¿-Transform.......................................
447
B.3.1 z-Transform Properties
..........................449
B.3.2 The Fourier Transform
..........................451
B.3.3 The Discrete Fourier Transform
..................452
B.4 The Discrete Cosine Transform
..........................453
С
Matrix Algebra
............................................457
C.I Introduction
..........................................457
C.2 Fundamentals
.........................................457
C.3 Determinants
..........................................458
C.4 Eigenvalues and Eigenvectors
............................460
D
Mathematical Foundations of Kernel Methods
.............463
D.I Introduction
..........................................463
D.2 Scalar Products, Norms and Metrics
.....................464
D.3 Positive Definite Kernels and Matrices
....................465
D.3.1 How to Make a Mercer Kernel
....................469
D.4
Condiţionate
Positive Definite Kernels and Matrices
........471
D.5 Negative Definite Kernels and Matrices
...................472
D.6 Relations Between Positive and Negative Definite Kernels
... 474
D.7 Metric Computation by Mercer Kernels
...................476
D.8 Hubert Space Representation of Positive Definite Kernels
... 478
D.9 Conclusions
...........................................480
XVI Contents
References
.....................................................481
Index
..........................................................483
|
any_adam_object | 1 |
author | Camastra, Francesco Vinciarelli, Alessandro |
author_facet | Camastra, Francesco Vinciarelli, Alessandro |
author_role | aut aut |
author_sort | Camastra, Francesco |
author_variant | f c fc a v av |
building | Verbundindex |
bvnumber | BV023220446 |
classification_rvk | ST 304 |
ctrlnum | (OCoLC)635181084 (DE-599)DNB984553460 |
discipline | Informatik |
format | Kit Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02961npm a2200637 c 4500</leader><controlfield tag="001">BV023220446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090901 </controlfield><controlfield tag="007">ou</controlfield><controlfield tag="008">080318s2008 xx eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N28,0021</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984553460</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848000063</subfield><subfield code="c">: ca. EUR 85.55 (freier Pr.), ca. sfr 131.00 (freier Pr.)</subfield><subfield code="9">978-1-84800-006-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848000070</subfield><subfield code="c">: ca. EUR 85.55 (freier Pr.), ca. sfr 131.00 (freier Pr.)</subfield><subfield code="9">978-1-84800-007-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781848000063</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11679592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)635181084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984553460</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-N2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 304</subfield><subfield code="0">(DE-625)143653:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Camastra, Francesco</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning for audio, image and video analysis</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Francesco Camastra ; Alessandro Vinciarelli</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 494 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Information and Knowledge Processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Videobearbeitung</subfield><subfield code="0">(DE-588)4536854-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitales Tonsignal</subfield><subfield code="0">(DE-588)4229078-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Sehen</subfield><subfield code="0">(DE-588)4129594-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Bildanalyse</subfield><subfield code="0">(DE-588)4145391-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Videobearbeitung</subfield><subfield code="0">(DE-588)4536854-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Digitales Tonsignal</subfield><subfield code="0">(DE-588)4229078-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="4"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="5"><subfield code="a">Videobearbeitung</subfield><subfield code="0">(DE-588)4536854-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vinciarelli, Alessandro</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016406357&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016406357</subfield></datafield></record></collection> |
id | DE-604.BV023220446 |
illustrated | Illustrated |
indexdate | 2024-12-20T13:10:57Z |
institution | BVB |
isbn | 9781848000063 9781848000070 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016406357 |
oclc_num | 635181084 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-N2 |
owner_facet | DE-355 DE-BY-UBR DE-N2 |
physical | XVI, 494 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Advanced Information and Knowledge Processing |
spellingShingle | Camastra, Francesco Vinciarelli, Alessandro Machine Learning for audio, image and video analysis theory and applications Informatik (DE-588)4026894-9 gnd Videobearbeitung (DE-588)4536854-5 gnd Bildanalyse (DE-588)4145391-8 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Digitales Tonsignal (DE-588)4229078-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
subject_GND | (DE-588)4026894-9 (DE-588)4536854-5 (DE-588)4145391-8 (DE-588)4113314-6 (DE-588)4229078-8 (DE-588)4033447-8 (DE-588)4193754-5 (DE-588)4129594-8 (DE-588)4006684-8 |
title | Machine Learning for audio, image and video analysis theory and applications |
title_auth | Machine Learning for audio, image and video analysis theory and applications |
title_exact_search | Machine Learning for audio, image and video analysis theory and applications |
title_full | Machine Learning for audio, image and video analysis theory and applications Francesco Camastra ; Alessandro Vinciarelli |
title_fullStr | Machine Learning for audio, image and video analysis theory and applications Francesco Camastra ; Alessandro Vinciarelli |
title_full_unstemmed | Machine Learning for audio, image and video analysis theory and applications Francesco Camastra ; Alessandro Vinciarelli |
title_short | Machine Learning for audio, image and video analysis |
title_sort | machine learning for audio image and video analysis theory and applications |
title_sub | theory and applications |
topic | Informatik (DE-588)4026894-9 gnd Videobearbeitung (DE-588)4536854-5 gnd Bildanalyse (DE-588)4145391-8 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Digitales Tonsignal (DE-588)4229078-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Maschinelles Sehen (DE-588)4129594-8 gnd Bildverarbeitung (DE-588)4006684-8 gnd |
topic_facet | Informatik Videobearbeitung Bildanalyse Digitale Signalverarbeitung Digitales Tonsignal Künstliche Intelligenz Maschinelles Lernen Maschinelles Sehen Bildverarbeitung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016406357&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT camastrafrancesco machinelearningforaudioimageandvideoanalysistheoryandapplications AT vinciarellialessandro machinelearningforaudioimageandvideoanalysistheoryandapplications |