Gradient flows in metric spaces and in the space of probability measures:
Saved in:
Main Authors: | , , |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Basel [u.a.]
Birkhäuser
2005
|
Series: | Lectures in mathematics, ETH Zürich
|
Subjects: | |
Links: | https://doi.org/10.1007/b137080 https://doi.org/10.1007/b137080 https://doi.org/10.1007/b137080 https://doi.org/10.1007/b137080 https://doi.org/10.1007/b137080 https://doi.org/10.1007/b137080 https://doi.org/10.1007/b137080 |
Item Description: | Includes bibliographical references and index |
Physical Description: | 1 Online-Ressource (VII, 333 S.) |
ISBN: | 3764324287 9783764373092 |
DOI: | 10.1007/b137080 |
Staff View
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022301827 | ||
003 | DE-604 | ||
005 | 20101101 | ||
007 | cr|uuu---uuuuu | ||
008 | 070307s2005 xxu o|||| 00||| eng d | ||
020 | |a 3764324287 |c acidfree paper |9 3-7643-2428-7 | ||
020 | |a 9783764373092 |c Online |9 978-3-7643-7309-2 | ||
024 | 7 | |a 10.1007/b137080 |2 doi | |
035 | |a (OCoLC)249361823 | ||
035 | |a (DE-599)BVBBV022301827 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-739 |a DE-355 |a DE-634 |a DE-91 |a DE-384 |a DE-703 |a DE-83 | ||
050 | 0 | |a QA312 | |
082 | 0 | |a 515.42 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Ambrosio, Luigi |d 1963- |e Verfasser |0 (DE-588)133791408 |4 aut | |
245 | 1 | 0 | |a Gradient flows in metric spaces and in the space of probability measures |c Luigi Ambrosio ; Nicola Gigli ; Giuseppe Savaré |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2005 | |
300 | |a 1 Online-Ressource (VII, 333 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in mathematics, ETH Zürich | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Measure theory | |
650 | 4 | |a Metric spaces | |
650 | 4 | |a Differential equations, Parabolic | |
650 | 4 | |a Monotone operators | |
650 | 4 | |a Evolution equations, Nonlinear | |
650 | 0 | 7 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gradientenfluss |0 (DE-588)4841287-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maßraum |0 (DE-588)4169057-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzialfeld |0 (DE-588)4126347-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fluss |g Mathematik |0 (DE-588)4489499-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 0 | 1 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 0 | 2 | |a Potenzialfeld |0 (DE-588)4126347-9 |D s |
689 | 0 | 3 | |a Fluss |g Mathematik |0 (DE-588)4489499-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gradientenfluss |0 (DE-588)4841287-9 |D s |
689 | 1 | 1 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 1 | 2 | |a Maßraum |0 (DE-588)4169057-6 |D s |
689 | 1 | 3 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Gigli, Nicola |e Verfasser |0 (DE-588)130331236 |4 aut | |
700 | 1 | |a Savaré, Giuseppe |e Verfasser |0 (DE-588)130331252 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-7643-2428-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/b137080 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015511807 | |
966 | e | |u https://doi.org/10.1007/b137080 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b137080 |l DE-91 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b137080 |l DE-384 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b137080 |l DE-355 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b137080 |l DE-703 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b137080 |l DE-739 |p ZDB-2-SMA |x Verlag |3 Volltext |
Record in the Search Index
DE-BY-TUM_katkey | 1962035 |
---|---|
_version_ | 1821934789672828929 |
any_adam_object | |
author | Ambrosio, Luigi 1963- Gigli, Nicola Savaré, Giuseppe |
author_GND | (DE-588)133791408 (DE-588)130331236 (DE-588)130331252 |
author_facet | Ambrosio, Luigi 1963- Gigli, Nicola Savaré, Giuseppe |
author_role | aut aut aut |
author_sort | Ambrosio, Luigi 1963- |
author_variant | l a la n g ng g s gs |
building | Verbundindex |
bvnumber | BV022301827 |
callnumber-first | Q - Science |
callnumber-label | QA312 |
callnumber-raw | QA312 |
callnumber-search | QA312 |
callnumber-sort | QA 3312 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 430 SK 560 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)249361823 (DE-599)BVBBV022301827 |
dewey-full | 515.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.42 |
dewey-search | 515.42 |
dewey-sort | 3515.42 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/b137080 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03254nam a2200769 c 4500</leader><controlfield tag="001">BV022301827</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101101 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070307s2005 xxu o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764324287</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">3-7643-2428-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764373092</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7643-7309-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b137080</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249361823</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022301827</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA312</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ambrosio, Luigi</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133791408</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gradient flows in metric spaces and in the space of probability measures</subfield><subfield code="c">Luigi Ambrosio ; Nicola Gigli ; Giuseppe Savaré</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 333 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in mathematics, ETH Zürich</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Parabolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monotone operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolution equations, Nonlinear</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gradientenfluss</subfield><subfield code="0">(DE-588)4841287-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßraum</subfield><subfield code="0">(DE-588)4169057-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzialfeld</subfield><subfield code="0">(DE-588)4126347-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluss</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4489499-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Potenzialfeld</subfield><subfield code="0">(DE-588)4126347-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Fluss</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4489499-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gradientenfluss</subfield><subfield code="0">(DE-588)4841287-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Maßraum</subfield><subfield code="0">(DE-588)4169057-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gigli, Nicola</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130331236</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Savaré, Giuseppe</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130331252</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-7643-2428-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015511807</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="l">DE-384</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="l">DE-355</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b137080</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV022301827 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T12:52:17Z |
institution | BVB |
isbn | 3764324287 9783764373092 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015511807 |
oclc_num | 249361823 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-634 DE-91 DE-BY-TUM DE-384 DE-703 DE-83 |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-634 DE-91 DE-BY-TUM DE-384 DE-703 DE-83 |
physical | 1 Online-Ressource (VII, 333 S.) |
psigel | ZDB-2-SMA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Birkhäuser |
record_format | marc |
series2 | Lectures in mathematics, ETH Zürich |
spellingShingle | Ambrosio, Luigi 1963- Gigli, Nicola Savaré, Giuseppe Gradient flows in metric spaces and in the space of probability measures Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Gradientenfluss (DE-588)4841287-9 gnd Metrischer Raum (DE-588)4169745-5 gnd Maßraum (DE-588)4169057-6 gnd Potenzialfeld (DE-588)4126347-9 gnd Fluss Mathematik (DE-588)4489499-5 gnd |
subject_GND | (DE-588)4137556-7 (DE-588)4841287-9 (DE-588)4169745-5 (DE-588)4169057-6 (DE-588)4126347-9 (DE-588)4489499-5 |
title | Gradient flows in metric spaces and in the space of probability measures |
title_auth | Gradient flows in metric spaces and in the space of probability measures |
title_exact_search | Gradient flows in metric spaces and in the space of probability measures |
title_full | Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio ; Nicola Gigli ; Giuseppe Savaré |
title_fullStr | Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio ; Nicola Gigli ; Giuseppe Savaré |
title_full_unstemmed | Gradient flows in metric spaces and in the space of probability measures Luigi Ambrosio ; Nicola Gigli ; Giuseppe Savaré |
title_short | Gradient flows in metric spaces and in the space of probability measures |
title_sort | gradient flows in metric spaces and in the space of probability measures |
topic | Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd Gradientenfluss (DE-588)4841287-9 gnd Metrischer Raum (DE-588)4169745-5 gnd Maßraum (DE-588)4169057-6 gnd Potenzialfeld (DE-588)4126347-9 gnd Fluss Mathematik (DE-588)4489499-5 gnd |
topic_facet | Measure theory Metric spaces Differential equations, Parabolic Monotone operators Evolution equations, Nonlinear Wahrscheinlichkeitsmaß Gradientenfluss Metrischer Raum Maßraum Potenzialfeld Fluss Mathematik |
url | https://doi.org/10.1007/b137080 |
work_keys_str_mv | AT ambrosioluigi gradientflowsinmetricspacesandinthespaceofprobabilitymeasures AT giglinicola gradientflowsinmetricspacesandinthespaceofprobabilitymeasures AT savaregiuseppe gradientflowsinmetricspacesandinthespaceofprobabilitymeasures |