Spectral theory of infinite-volume hyperbolic surfaces:
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Boston [u.a.]
Birkhäuser
2007
|
Series: | PM - Progress in Mathematics
282 |
Subjects: | |
Links: | http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Physical Description: | XI, 355 S. Ill., graph. Darst. |
ISBN: | 9780817645243 0817645241 |
Staff View
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022255992 | ||
003 | DE-604 | ||
005 | 20071126 | ||
007 | t| | ||
008 | 070205s2007 xx ad|| |||| 00||| eng d | ||
015 | |a 06,N34,0448 |2 dnb | ||
016 | 7 | |a 980660955 |2 DE-101 | |
020 | |a 9780817645243 |c Gb. (Pr. in Vorb.) |9 978-0-8176-4524-3 | ||
020 | |a 0817645241 |c Gb. (Pr. in Vorb.) |9 0-8176-4524-1 | ||
024 | 3 | |a 9780817645243 | |
028 | 5 | 2 | |a 11740766 |
035 | |a (OCoLC)124025851 | ||
035 | |a (DE-599)BVBBV022255992 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29T | ||
050 | 0 | |a QA333 | |
082 | 0 | |a 515.93 |2 22 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Borthwick, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral theory of infinite-volume hyperbolic surfaces |c David Borthwick |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2007 | |
300 | |a XI, 355 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a PM - Progress in Mathematics |v 282 | |
650 | 4 | |a Riemann, Surfaces de | |
650 | 4 | |a Spectre (Mathématiques) | |
650 | 4 | |a Riemann surfaces | |
650 | 4 | |a Spectral theory (Mathematics) | |
650 | 0 | 7 | |a Hyperbolische Fläche |0 (DE-588)4735194-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Fläche |0 (DE-588)4735194-9 |D s |
689 | 0 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a PM - Progress in Mathematics |v 282 |w (DE-604)BV000004120 |9 282 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015466712 |
Record in the Search Index
_version_ | 1819383875946676224 |
---|---|
adam_text | Contents
1
Introduction
................................................... 1
2
Hyperbolic Surfaces
............................................ 7
2.1
The hyperbolic plane
........................................ 8
2.2
Fuchsian groups
............................................ 13
2.3
Geometrically finite groups
.................................. 18
2.4
Classification of hyperbolic ends
.............................. 22
2.5
Gauss-Bonnet theorem
...................................... 28
2.6
Length spectrum and Selberg s
zeta
function
.................... 31
3
Compact and Finite-Area Surfaces
............................... 37
3.1
Selberg s trace formula for compact surfaces
.................... 37
3.2
Consequences of the trace formula
............................ 42
3.3
Finite-area hyperbolic surfaces
............................... 45
4
Spectral Theory for the Hyperbolic Plane
......................... 49
4.1
Resolvent
................................................. 49
4.2
Generalized eigenfimctions
.................................. 52
4.3
Scattering matrix
........................................... 56
5
Model Resolvents for Cylinders
.................................. 61
5.1
Hyperbolic cylinders
........................................ 61
5.2
Funnels
................................................... 68
5.3
Parabolic cylinder
.......................................... 70
6
The Resolvent
................................................. 75
6.1
Compactification
........................................... 75
6.2
Analytic
Fredholm
theorem
.................................. 79
6.3
Continuation of the resolvent
................................. 81
6.4
Structure of the resolvent kernel
.............................. 84
6.5
The stretched product
....................................... 87
x
Contents
7
Spectral
and Scattering Theory
.................................. 93
7.1
Essential and discrete spectrum
............................... 93
7.2
Absence of embedded eigenvalues
............................ 95
7.3
Generalized eigenfunctions
.................................. 102
7.4
Scattering matrix
........................................... 105
7.5
Scattering matrices for the runnel and cylinders
................. 114
8
Resonances and Scattering Poles
................................. 117
8.1
Multiplicities of resonances
.................................. 118
8.2
Structure of the resolvent at a resonance
........................ 119
8.3
Scattering poles
............................................ 124
8.4
Operator logarithmic residues
................................ 126
8.5
Half-integer points
......................................... 131
8.6
Coincidence of resonances and scattering poles
................. 137
9
Upper Bound for Resonances
.................................... 147
9.1
Resonances and zeros of determinants
......................... 148
9.2
Singular value estimates
..................................... 151
9.3
Upper bound
.............................................. 154
9.4
Estimates on model terms
.................................... 156
10
Selberg
Zeta
Function
.......................................... 171
10.1
Relative scattering determinant
............................... 173
10.2
Regularized traces
.......................................... 175
10.3
The resolvent 0-trace calculation
.............................. 183
10.4
Structure of the
zeta
function
................................. 189
10.5
Order bound
............................................... 196
10.6
Determinant of the Laplacian
................................. 203
11
Wave Trace and
Poisson
Formula
................................ 207
1
1.1
Regularized wave trace
...................................... 208
11.2
Model wave kernel
......................................... 209
11.3
Wave 0-trace formula
....................................... 211
11.4
Poisson
formula
............................................ 215
12
Resonance Asymptotics
......................................... 223
12.1
Lower bound on resonances
.................................. 223
12.2
Lower bound near the critical line
............................. 226
12.3
Weyl formula for the scattering phase
.......................... 229
13
Inverse Spectral Geometry
...................................... 237
13.1
Resonances and the length spectrum
........................... 238
13.2
Hyperbolic trigonometry
.................................... 239
13.3 Teichmüller
space
.......................................... 242
13.4
Finiteness of
isospectral
classes
............................... 248
Contents xi
14
Patterson-Sullivan Theory
...................................... 259
14.1
A measure on the limit set
................................... 259
14.2
Ergodicity
................................................. 267
14.3
Hausdorff measure of the limit set
............................. 274
14.4
The first resonance
......................................... 278
14.5
Prime geodesic theorem
..................................... 284
14.6
Refined asymptotics of the length spectrum
.....................289
15
Dynamical Approach to the
Zeta
Function
........................ 297
15.1
Schottky groups
............................................ 298
15.2
Symbolic dynamics
......................................... 300
15.3
Dynamical
zeta
function
..................................... 303
15.4
Growth estimates
........................................... 308
A Appendix
..................................................... 315
A.I Entire functions
............................................ 315
A.2 Distributions and Fourier transforms
........................... 320
A.3 Spectral theory
............................................. 324
A.4 Singular values, traces, and determinants
....................... 330
A.5 Pseudodifferential operators
.................................. 336
References
......................................................... 341
Notation Guide
..................................................... 351
Index
............................................................. 353
|
any_adam_object | 1 |
author | Borthwick, David |
author_facet | Borthwick, David |
author_role | aut |
author_sort | Borthwick, David |
author_variant | d b db |
building | Verbundindex |
bvnumber | BV022255992 |
callnumber-first | Q - Science |
callnumber-label | QA333 |
callnumber-raw | QA333 |
callnumber-search | QA333 |
callnumber-sort | QA 3333 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 620 |
ctrlnum | (OCoLC)124025851 (DE-599)BVBBV022255992 |
dewey-full | 515.93 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.93 |
dewey-search | 515.93 |
dewey-sort | 3515.93 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02008nam a2200517 cb4500</leader><controlfield tag="001">BV022255992</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071126 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070205s2007 xx ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N34,0448</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980660955</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817645243</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">978-0-8176-4524-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817645241</subfield><subfield code="c">Gb. (Pr. in Vorb.)</subfield><subfield code="9">0-8176-4524-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780817645243</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11740766</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)124025851</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022255992</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA333</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.93</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Borthwick, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral theory of infinite-volume hyperbolic surfaces</subfield><subfield code="c">David Borthwick</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 355 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">PM - Progress in Mathematics</subfield><subfield code="v">282</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann, Surfaces de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectre (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral theory (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Fläche</subfield><subfield code="0">(DE-588)4735194-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Fläche</subfield><subfield code="0">(DE-588)4735194-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">PM - Progress in Mathematics</subfield><subfield code="v">282</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">282</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015466712</subfield></datafield></record></collection> |
id | DE-604.BV022255992 |
illustrated | Illustrated |
indexdate | 2024-12-20T12:51:13Z |
institution | BVB |
isbn | 9780817645243 0817645241 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015466712 |
oclc_num | 124025851 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-29T |
physical | XI, 355 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Birkhäuser |
record_format | marc |
series | PM - Progress in Mathematics |
series2 | PM - Progress in Mathematics |
spellingShingle | Borthwick, David Spectral theory of infinite-volume hyperbolic surfaces PM - Progress in Mathematics Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche (DE-588)4735194-9 gnd Spektraltheorie (DE-588)4116561-5 gnd |
subject_GND | (DE-588)4735194-9 (DE-588)4116561-5 |
title | Spectral theory of infinite-volume hyperbolic surfaces |
title_auth | Spectral theory of infinite-volume hyperbolic surfaces |
title_exact_search | Spectral theory of infinite-volume hyperbolic surfaces |
title_full | Spectral theory of infinite-volume hyperbolic surfaces David Borthwick |
title_fullStr | Spectral theory of infinite-volume hyperbolic surfaces David Borthwick |
title_full_unstemmed | Spectral theory of infinite-volume hyperbolic surfaces David Borthwick |
title_short | Spectral theory of infinite-volume hyperbolic surfaces |
title_sort | spectral theory of infinite volume hyperbolic surfaces |
topic | Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche (DE-588)4735194-9 gnd Spektraltheorie (DE-588)4116561-5 gnd |
topic_facet | Riemann, Surfaces de Spectre (Mathématiques) Riemann surfaces Spectral theory (Mathematics) Hyperbolische Fläche Spektraltheorie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2839886&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015466712&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT borthwickdavid spectraltheoryofinfinitevolumehyperbolicsurfaces |