Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Multiple imputation for nonres...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Multiple imputation for nonresponse in surveys:
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Rubin, Donald B. 1943- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Hoboken, NJ. [u.a.] Wiley 2004
Schriftenreihe:Wiley classics library edition
Schlagwörter:
Ontbrekende gegevens
Survey-onderzoek
Multiple imputation (Statistics)
Nonresponse (Statistics)
Social surveys > Response rate
Datenerhebung
Ausreißerwert
Umfrage
Statistik
Imputationstechnik
Schätztheorie
Non-response-Problem
Antwortverweigerung
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015025147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XXIX, 287 S.
ISBN:0471655740
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV021812894
003 DE-604
005 20230704
007 t|
008 061115s2004 xx |||| 00||| eng d
020 |a 0471655740  |9 0-471-65574-0 
035 |a (OCoLC)56214438 
035 |a (DE-599)BVBBV021812894 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-N32  |a DE-473  |a DE-11  |a DE-188  |a DE-578  |a DE-19 
050 0 |a HA31.2 
082 0 |a 001.4/22  |2 22 
082 0 |a 001.422 
084 |a QH 235  |0 (DE-625)141550:  |2 rvk 
084 |a QH 244  |0 (DE-625)141558:  |2 rvk 
084 |a SK 840  |0 (DE-625)143261:  |2 rvk 
084 |a MAT 625f  |2 stub 
100 1 |a Rubin, Donald B.  |d 1943-  |e Verfasser  |0 (DE-588)131607618  |4 aut 
245 1 0 |a Multiple imputation for nonresponse in surveys  |c Donald B. Rubin 
264 1 |a Hoboken, NJ. [u.a.]  |b Wiley  |c 2004 
300 |a XXIX, 287 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Wiley classics library edition 
650 7 |a Ontbrekende gegevens  |2 gtt 
650 7 |a Survey-onderzoek  |2 gtt 
650 4 |a Multiple imputation (Statistics) 
650 4 |a Nonresponse (Statistics) 
650 4 |a Social surveys  |x Response rate 
650 0 7 |a Datenerhebung  |0 (DE-588)4155272-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Ausreißerwert  |0 (DE-588)4143602-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Umfrage  |0 (DE-588)4005227-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Imputationstechnik  |0 (DE-588)4609617-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Schätztheorie  |0 (DE-588)4121608-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Non-response-Problem  |0 (DE-588)4133974-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Antwortverweigerung  |0 (DE-588)4343644-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Schätztheorie  |0 (DE-588)4121608-8  |D s 
689 0 1 |a Imputationstechnik  |0 (DE-588)4609617-6  |D s 
689 0 |5 DE-604 
689 1 0 |a Umfrage  |0 (DE-588)4005227-8  |D s 
689 1 1 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 1 |5 DE-604 
689 2 0 |a Antwortverweigerung  |0 (DE-588)4343644-4  |D s 
689 2 1 |a Imputationstechnik  |0 (DE-588)4609617-6  |D s 
689 2 |5 DE-604 
689 3 0 |a Umfrage  |0 (DE-588)4005227-8  |D s 
689 3 1 |a Non-response-Problem  |0 (DE-588)4133974-5  |D s 
689 3 2 |a Imputationstechnik  |0 (DE-588)4609617-6  |D s 
689 3 |5 DE-188 
689 4 0 |a Datenerhebung  |0 (DE-588)4155272-6  |D s 
689 4 |8 1\p  |5 DE-604 
689 5 0 |a Ausreißerwert  |0 (DE-588)4143602-7  |D s 
689 5 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Onlineausgabe  |z 978-0-470-31669-6 
856 4 2 |m Digitalisierung UB Bamberg  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015025147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-015025147 

Datensatz im Suchindex

_version_ 1819369831521058816
adam_text Contents TABUES ANB FIGURES xxiv GLOSSARY xxvii 1. INTRODUCTION 1 1.1. Overview 1 Nonresponse in Surveys 1 Multiple Imputation 2 Can Multiple Imputation Be Used in Nonsurvey Problems? 3 Background 4 1.2. Examples of Surveys with Nonresponse 4 Example 1.1. Educational Testing Service s Sample Survey of Schools 4 Example 1.2. Current Population Survey and Missing Incomes 5 Example 1.3. Census PubEc-Use Data Bases and Missing Occupation Codes 6 Example 1.4. Normative Aging Study of Drinking 7 13. Properly Handling Nonresponse 7 Handling Noaresponse is Example 1.1 7 Handling Nonresponse in Example 1.2 9 Handing Nonresponss in Example 1J 10 Xii CONTENTS Handling Nonresponse in Example 1.4 10 The Variety of Objectives When Handling Nonresponse 11 1.4. Single Imputation 11 Imputation Allows Standard Complete-Data Methods of Analysis to Be Used 11 Imputation Can Incorporate Data Collectors Knowledge 12 The Problem with One Imputation for Each Missing Value 12 Example 1.5. Best-Prediction Imputation in a Simple Random Sample 13 Example 1.6. Drawing Imputations from a Distribution (Example 1.5 continued) 14 1.5. Multiple Imputation 15 Advantages of Multiple Imputation 15 The General Need to Display Sensitivity to Models of Nonresponse 16 Disadvantages of Multiple Imputation 17 1.6. Numerical Example Using Multiple Imputation 19 Analyzing This Multiply-Imputed Data Set 19 Creating This Multiply-Imputed Data Set 22 1.7. Guidance for aie Reader 22 Problems 23 2. STATISTICAL BACKGROUND 27 2.1. Introduction 27 Random Indexing of Units 27 2.2. Variables in the Finite Population 28 Covariates X 28 Outcome Variables Y 29 Indicator for Inclusion in the Survey I 29 Indicator for Response in the Survey R 30 Stable Response 30 Surveys with Stages of Sampling 31 CONTENTS ХІІІ 13. Probability Distributions and Related Calculations 31 Conditional Probability Distributions 32 Probability Specifications Are Symmetric in Unit Indices 32 Bayes s Theorem 33 Finding Means and Variances from Conditional Means and Variances 33 2.4. Probability Specifications for Indicator Variables 35 Sampling Mechanisms 35 Examples of Unconfounded Probability Sampling Mechanisms 37 Examples of Confounded and Nonprobabflity Sampling Mechanisms 38 Response Mechanisms 38 2.5. Probability Specifications for (X, F ) 39 de Finetti s Theorem 40 Some Intuition 40 Example 2.1. A Simple Normal Model for Y¡ 40 Lemma 2.1, Distributions Relevant to Example 2.1 41 Example 2.2. A Generalization of Example 2.1 42 Example 2.3. An Application of Example 2.2: The Bayesian Bootstrap 44 Example 2.4. Y- Approximately Proportional to X¡ 46 2.6. Bayesian Inference for a Population Quantity 48 Notation 48 The Posterior Distribution for Q{X, Y) 48 Relating the Posterior Distribution of Q to the Posterior Distribution of Ynob 49 Ignorable Sampling Mechanisms SO Result 2.1. An Equivalent Definition for Ignorable Sampling Mechanisms SO Ignorable Response Mechanisms SI Result 2.2. IgHOrabiity of the Response Mechanism When the Sampling Mechanism Is Ignorable SI Result 2.3. Тће Practical Importane» of IgaoraMe Mechanisms 52 xiv CONTENTS Relating Ignorable Sampling and Response Mechanisms to Standard Terminology in the Literature on Parametric Inference from Incomplete Data S3 2.7. Interval Estimation 54 General Interval Estimates 55 Bayesian Posterior Coverage 55 Example 2.5. Interval Estimation in the Context of Example 2.1 56 Fixed-Response Randomization-Based Coverage 56 Random-Response Randomization-Based Coverage 58 Nominal versus Actual Coverage of Intervals 58 2.8. Bayesian Procedures for Constructing Interval Estimates, Including Significance Levels and Point Estimates 59 Highest Posterior Density Repons 59 Significance Levels — /»-Values 60 Point Estimates 62 2.9. Evaluating me Performance of Procedures 62 A Protocol for Evaluating Procedures 63 Result 2.4. The Average Coverages Are All Equal to the Probability That С Includes Q 64 Further Comments on Calibration 64 2.10. Similarity of Bayesian and Randomization-Based Inferences in Mány Practical Cases 65 Standard Asymptotic Results Concerning Bayesian Procedures 66 Extensions of These Standard Results 66 Practical Conclusions of Asymptotic Results 67 Relevance to tbe Multiple-Imputation Approach to Nonresponse 67 Problems 68 3. UNDERLYING BAYESIAN THEORY 75 3.1. introduction and Summary of Repeated-Imputation Inferences 75 Notation 75 CONTENTS XV Combining the Repeated Complete-Data Estimates and Variances 76 Scalar g 77 Significance Levels Based on the Combined Estimates and Variances 77 Significance Levels Based on Repeated Compiete-Data Significance Levels 78 Example 3.1. Inference for Regression Coefficients 79 3.2. Key Results for Analysis Wben tne Multiple Imputations Are Repeated Draws from the Posterior Distribution of the Missing Values 81 Result 3.1. Averaging the Completed-Data Posterior Distribution of Q over the Posterior Distribution of Ymit to Obtain the Actual Posterior Distribution of Q 82 Example 32. The Normal Model Continued 82 The Posterior Cumulative Distribution Function of Q 83 Result 3.2. Posterior Mean and Variance of Q 84 Simulating the Posterior Mean and Variance of Q 85 Missing and Observed Information with Infinite m 85 Inference for Q from Repeated Completed-Data Means and Variances 86 Example 3 J. Example 32 Continued 87 33. Inference for Scalar Estimands from ш Modest Number of Repeated Completed-Data Means and Variances 87 Тће Plan of Attack 88 The Samplmg Distribution of Sm Gives (X, Yebs, Riae) 88 The Conditional Distribution of (QmS Um) Given Sm and S„ 89 The Condiţional Distribution of Q Given Ѕт and JM 89 The Conditional Distribution of Д» Given Sm 90 The Conditional ШїгіЬйїіоа of Пт + Џ + m~l)Bm Gives Ѕ„ 90 Approximation 3.1 Relevant to the Befareas-Fîsner Distribution 91 Applying Apfxrosámation ЗЛ to öböia (3 J J) 92 The Approximating t Refermée Dìsteibatìoa for Scalar Q 92 XVI CONTENTS Example 3.4. Example 3.3 Continued 92 Fraction of Information Missing Due to Nonresponse 93 3.4. Significance Levels for Multicoraponent Estimanđs from a Modest Number of Repeated Completed-Data Means and Variance-Covarianee Matrices 5*4 The Conditional Distribution of Q Given Sm and Bœ 94 The Bayesian /»-Value for a Null Value Qo Given Sm: General Expression 95 The Bayesian ¿»-Value Given Sm with Scalar Q 95 The Bayesian p-Vàiue Given S„witn Scalar Q — Closed-Form Approximation 96 ^Values with В„ a Priori Proportional to Tm 96 ¿¡»-Values with Bœ a Priori Proportional to Тж — Closed-Form Approximation 97 /j-Vahies When В„ Is Not a Priori Proportional to Um 98 3.5. Significance Levels from Repeated Completed-Data Significance Levels 99 A New Test Statistic 99 The Asymptotic Equivalence of Dm and Dm — Proof 100 Integrating over rm to Obtain a Significance Level from Repeated Completed-Data Significance Levels 100 3.6. Relating the Completed-Data and Complete-Data Posterior Distributions When the Sampling Mechanism Is Ignorable 1Θ2 Result 3.3. The Completed-Data and Complete-Data Posterior Distributions Are Equal When Sampling and Response Mechanisms Are Ignorable 103 Using ii.d. Modeling 104 Result 3.4. The Equality of Completed-Data and Complete-Data Posterior Distributions When Using ii-d. Models 104 Example 3.5. A Situation io Which Conditional on 9XY, the Completed-Data aad Complete-Data Posterior Distributions of Q Are Equal—Condition (3.6.7) 105 Example 3.6. Cases in Which Condition (3.6.7) Nearly Holds 105 CONTENTS XVii Example 3.7. Situations in Which the Completed-Data r»nd Complete-Data Posterior Distributions of θχγ Ait Equal—Condition (3.6.8) 106 Example 3.S. A Simple Case Illustrating the Large- Sample Equivalence of Completed-Data and Complete- Data Posterior Distributions of &XY 106 The General Use of Complete-Data Statistics 106 Problems 107 4. RANDOMIZATION-BASED EVALUATIONS 113 4.1. Introduction 113 Major Conclusions 113 Large-Sample Relative Efficiency of Point Estimates 114 Large-Sample Coverage of /-Based Interval Estimates 114 Outline of Chapter 115 4.2. General Conditions for the Randomization-Validity of înfinîte-m Repeated-Imputation Inferences 116 Complications in Practice 117 More General Conditions for Randomization-Validity 117 Definition: Proper Multiple-Imputation Methods 118 Result 4.1. If the Complete-Data Inference Is Randomization-Valid and the Multiple-Imputation Procedure Is Proper, Then the Infinite-m Repeated- Imputation Inference Is Randomization-Valid ander the Posited Response Mechanism 119 43. Examples of Proper and Improper Imputation Methods in a Simple Case with Ignorable Nonresponse 120 Example 4.1. Simple Random Multiple Imputation 120 Why Variability Is Underestimated Using the Maltiple- Imputation Hot-Deck 122 Example 4.2. Falły Normal Вауеяав Repeated Imputation 123 Example 4.3. A Nonnormal Bayesian Imputation Procedure That Is Proper for the Standard Inference — The Bayesian Bootstrap 123 Example 4.4. An Approximately Bayesiaa yet Proper Imputation Method-—The Approximate Взувши Bootstrap 124 XVÜi CONTENTS Example 4.5. The Mean and Variance Adjusted Hot-Deck 124 4.4. Further Discussion of Proper Imputation Methods 125 Conclusion 4.1. Approximate Repetitions from a Bayesian Model Tend to Be Proper 125 The Heuristic Argument 126 Messages of Conclusion 4.1 126 The Importance of Drawing Repeated Imputations Appropriate for the Posited Response Mechanism 127 The Role of the Compiete-Data Statistics in Determining Whether a Repeated Imputation Method Is Proper 127 4.5. The Asymptotic Distribution of (Qmf Um, Bm) for Proper Imputation Methods 128 Validity of the Asymptotic Sampling Distribution of Sm 128 The Distribution of {Qm, Ђт, B J Given (Ж, Y) for Scalar Q 129 Random-Response Randomization-Based Justification for the / Reference Distribution 130 Extension of Results to Multicomponent Q 131 Asymptotic Efficiency of Qm Relative to Qœ 131 4.6. Evaluations of Finite-*» Inferences with Scalar Estimands 132 Small-Sample Efficiencies of Asymptotically Proper Imputation Methods from Examples 4.2-4.5 132 Large-Sample Coverages of Interval Estimates Using a t Reference Distribution and Proper Imputation Methods 134 Small-Sample Monte Carlo Coverages of Asymptotically Proper Imputation Methods from Examples 4.2-4.5 135 Evaluation of Significance Levels 135 4.7. Evaluation of Significance Levels from die Moment- Based Statistics Dm and Dm with Multicomponent Estimands 137 The Level of a Significance Testing Procedare 138 The Level of J>m — Analysis for Proper Imputation Methods and Large Samples 138 The Level of !>„— Numerical Results 139 CONTENTS XIX The Level of A,—Analysis 139 The Effect of Unequal Fractions of Missing Information on bm 141 Some Numerical Results for Ďm with k = (k + 1)p/2 141 4.8. Evaluation of Significance Levels Based on Repeated Significance Levels 144 The Statistic Dm 144 The Asymptotic Sampling Distribution of dm and s¿ 144 Some Numerical Results for 2>m 145 The Superiority of Multiple Imputation Significance Levels 145 Problems 148 5. PROCEDURES WITH IGNORABLE NONRESPONSE 154 5.1. Introduction 154 No Direct Evidence to Contradict Ignorable Nonresponse 155 Adjust for All Observed Differences and Assume Unobserved Residual Differences Are Random 155 Univariate Y¡ and Many Respondents at Each Distinct Value of X, That Occurs Among Nonrespondents 156 The More Common Situation, Even with Univariate Y¡ 156 A Popular Implicit Model — The Cessas Bureau s Hot-Deck 15? Metric-Matching Hot-Deck Methods 158 Least-Squares Regression 159 Outline of Chapter 159 5.2. Creating Imputed Values under an Explicit Model 160 The Modeling Task 160 The Imputation Task léi Result 5.1. The Imputation Task with Ignorable Nonresponse 162 The Estimation Task 163 Resell 5.2. Tàe Estimation Task with Ignorable NonrespoBse When ФщК and $x Are β Priori Independent 164 XX CONTENTS Resalí 53. The Estimation Task with Ignorable Monresponse, θγίΧ and θχ a Priori Independent, and Univariate Y¡ 165 A Simplified Notation 165 53. Some Explicit Imputation Models with Univariate Fř and Covariates 166 Example 5.1. Noraial Linear Régression Model with Univariate Y¡ 166 Ехашріе 5.2. Adding a Hot-Deck Component to the Normal Linear Regression Imputation Model 168 Extending the Normal Linear Regression Model 168 Example 53. A Logistic Regression Imputation Model for Dichotomous Y¡ 169 5.4. Monotone Patterns of Missingness in Multivariate Y¡ 170 Monotone Missingness in Y — Definition 171 The General Monotone Pattern — Description of General Techniques 171 Example 5.4. Bivariate Y¡ and an Implicit Imputation Model 172 Example 5.5. Bivariate Y¡ with an Explicit Normal Linear Regression Model 173 Monotone-Distinct Structure 174 Result 5.4. The Estimation Task with a Monotone- Distinct Structure 175 Result 5.5. The Imputation Task with a Monotone- Distinct Structure 177 5.5. Missing Somi Security Benefits in the Current Population Survey 178 The CPS-IRS-SSA Exact Match File 178 The Reduced Data Base 179 The Modeling Task 179 The Estimation Task 180 The Imputation Task 181 Results Concerning Absolute Accuracies of Prediction 181 Inferences for the Average ÖASDI Benefits for the Nonrespondents in the Sample 184 Results on Inferences for Population Quantities 185 CONTENTS XXI 5.6. Beyond Monotone Míssingness 186 Two Outcomes Never Jointly Observed — Statistical Matching of Files 186 Example 5.6. Two Normal Outconts Never Jointly Observed 187 Problems Arising with Nonmonotone Patterns 188 Discarding Data to Obtain a Monotone Pattern 189 Assuming Conditional Independence Among Blocks of Variables to Create Independent Monotone Patterns 190 Using Computationally Convenient Explicit Models 191 Iteratively Using Methods for Monotone Patterns 192 The Sampling/Importance Resampling Algorithm 192 Some Details of SIR 193 Example 5.7. An Illustrative Application of SIR 194 Problems 195 6. PROCEDURES WITH NONIGNORABŁE NONRESPONSE 202 6.1. Introduction 202 Displaying Sensitivity to Models for Nonresponse 202 The Need to Use Easily Communicated Models 203 Transformations to Create Nonignorabie Imputed Values from Ignorable Imputed Values 203 Other Simple Methods for Creating Nonignofable Imputed Values Using Ignorable Imputation Models 203 Essential Statistical Issues and Outline of Chapter 204 6.2. Nonignorabie Nonresponse with Umvariate Y¡ and No X,- 2Ö5 The Modeling Task 205 The Imputation Task 206 The Estimation Task 206 Two Basic Approaches to the Modefing Task 207 Example 6.1. The Simple Normat Mixture Model 207 Example 6.2. The Simple Normal Selection Model 209 63. Formal Tasks wittt Nonignorabie NearespeBse 2Ιβ The Modeling Task—Notation 210 XXU CONTENTS Two General Approaches to the Modeling Task 211 Similarities with Ignorable Case 211 The Imputation Task 212 Result 6.1. The Imputation Task with Nonignorable Nonresponse 212 Result 62, The Imputation Task with Nonignorable Nonresponse When Each Unit Is Either Included in or Excluded from the Survey 212 The Estimation Task 213 Result 6.3. The Estimation Task with Nonignorable Nonresponse When вУщХ Is a Priori Independent of θχ 213 Result 6.4. The Estimation Task with Nonignorable Nonresponse When O^xr Is a Priori Independent of (вщХ, θ x) and Each Unit Is Either Included in or Excluded from the Survey 213 Result 6.S. The Imputation and Estimation Tasks with Nonignorable Nonresponse and Univariate Y¡ 214 Monotone Missingness 214 Result 6.6. The Estimation and Imputation Tasks with a Monotone-Distinct Structure and a Mixture Model for Nonignorable Nonresponse 214 Selection Modeling and Monotone Missingness 215 6.4. Illustrating Mixture Moddiag Using Educational Testing Service Data 215 The Data Base 216 The Modeling Task 216 Clarification of Prior Distribution Relating Nonrespondent and Respondent Parameters 217 Comments on Assumptions 218 The Estimation Task 219 The Imputation Task 219 Analysis of Multiply-Imputed Data 221 6.5. Illustrating Selection Modeling Using CPS Date 222 The Data Base 223 The Modeimg Task 224 The Estimation Task 225 The Imputation Task 225 CONTENTS ХХЇІІ Accuracy of Results for Single Imputation Methods 226 Estimates and Standard Errors for Average log(wage) for Nonrespondents is the Sample 22Î Inferences for Population Mean logCwage) 229 6.6. Extensions to Surveys with Follow-Ups 229 Ignorable Nonresponse 231 Nonignorable Nonresponse with 100% Follow-Up Response 231 Example 6.3. 100% Follow-Up Response in a Simple Random Sample of Y¡ 232 Ignorable Hard-Core Nonresponse Among Foflow-Ups 233 Nonignorable Hard-Core Nonresponse Among Foilow- Ups 233 Waves of FoHow-Ups 234 6.7. Follow-Up Response in a Survey of Drinking Behavior Among Mea of Retirement Age 234 The Data Base 235 The Modeling Task 235 The Estimation Task 235 The Imputation Task 235 Inference for the Effect of Retirement Status oa Drinking Behavior 239 Problems 240 REFERENCES 244 AUTHOR INDEX 251 SUBJECT INDEX 2S3 APPENDIX lì Report Written for the Social Security Administration In 1977 259 APPENDIX II: Report Written for the Census Borea« In 1983 268 Tables and Figures Figure 1.1. Data set with m imputations for each missing datum. 3 ТаЫе 1.1. Artificial example of survey data and multiple imputa¬ tion. 20 ТаЫе 1.2. Analysis of multiply-imputed data set of Table 1.1. 21 Figure 2.1. Matrix of variables in a finite population of JV units. 29 Figure 2.2. Contours of the posterior distribution of Q with the null value Qo indicated. The significance level of Qo is the posterior probability that g is in the shaded area and beyond. 62 ТаЫе 4.1. Large-sample relative efficiency (in %) when using a finite number of proper imputations, m, rather than an infinite number, as a function of the fraction of missing information, γ0: RE = (1 + yo/w)~1/2. 114 ТаЫе 4.2. Large-sample coverage probability (in %) of interval estimates based on the r reference distribution, (3.1.8), as a function of the number of proper imputations, m ä: 2; the fraction of missing information, γ0; and the nominal level, 1 — a. Also included for contrast are results based on single imputation, m = 1, using the complete-daîa normal^eference distribution (3.1.1) with Q replaced by Qx = Qmi and U replaced by Ux = Umi. 115 ТаЫе 43. Simulated coverages (in %) oí asymptotically proper multiple (m = 2) imputation procedures with nominal levels Ш% and 95%, using г -based inferences, response rates n-i/n, and normal and nonnormal data (Laplace, logBOrmal =exp Νφ, í)); maximum standard error < 1%. 136 ХЗНГГ TABLES AND FIGURES XXV Table 4.4. Large-sample level (in %) of Dm with Fk , reference distribution as a function of nominal level, a; number of components being tested, k; number of proper imputations, m; and fraction of missing information, γ0. Accuracy of results = 5000 simulations of (4.7.8) with p0 set to I. Table 45. Large-sample level (in %) of Ďm with FkÁk+Vir/2 reference distribution as a function of number of com¬ ponents being tested, k; number of proper imputa¬ tions, m; fraction of missing information, y0; and variance of fractions of missing information, 0 (zero), S (small), L (large). Accuracy of results = 5000 simula¬ tions of (4 J.9). Large-sample level (in %) of Dm with Fkil+k-i)f/2 reference distribution as a function of number of com¬ ponents being tested, k; number of proper imputa¬ tions, m; fraction of missing information, γ0; and variance of fractions of missing information, 0 (zero), S (small), L (large). Accuracy of results = 5000 simula¬ tions of (4.7.7). Large-sample level (in %} of ¿Ц^ with χ| reference distribution as a function of nominal level a; number of components being tested, k; and fraction of missing information, γ0. Table 4.6. Table 4.7. Figure 5.1. Figure 5.2. Table 5.1. ТаЫе 5.2. Table 53. Table 5.4. A monotone pattern of missingness, 1 — observed, 0 = missing. Artificial example illustrating hot-deck multiple impu¬ tation with a monotone pattern of missing data; parentheses enclose m = 2 imputations. Multiple imputations of OASDI benefits for nonre- spondents 62-71 years of age. Multiple imputations of 0АЅШ benefits for nonre- spondents over 72 years of age. Accuracies of imputation methods with respect to mean absolute deviation (MAD) and root mean squared deviation (RMS). Comparison of estimates (standard errors) for mean ОАЅШ benefits impied by imputation Methods for noarespondeni groups in the sample. 140 142 146 147 171 172 182 183 183 184 TABLES AND FIGURES ТаЫе 5.5. ТаЫе 5.6. Table 6.1. ТаЫе 6.2. Table 63. ТаЫе 6.4. тт* ì 6.І ТаЫе 63. ТаЫе 6.6. ТаЫе 6.7. Table 6.8. Table 6.9. Table 6.10. Comparison of estimates (standard errors) for mean OASDI benefits impEed by imputation methods for groups ia the population. 185 Example from Marini, Olsen and Rubin (1980) il¬ lustrating how to obtain a monotone pattern of missing data by discarding data; 1 = observed, 0 = missing. 190 Summary of repeated-imputation intervals for variable 17B in educational example. 221 Background variables X for GRZ example on imputa¬ tion of missing incomes. 223 Root-mean-squared error of imputations of log-wage: Impute posterior mean given θ fixed at MLE, Θ. 226 Repeated-imputation estimates (standard errors) for average log(wage) for nonrespondents in the sample under five imputation procedures. 228 Schematic data structure with follow-up surveys of nonrespondents: boldface produces У data. 230 Mean alcohol consumption level and retirement status for respondents and nonrespondents within birth cohort: Data from 1982 Normative Aging Study drink¬ ing questionnaire. 236 Summary of least-squares estimates of the regression of log(l + drinks/day) on retirement status (0 = working, 1 — retired), birth year, and retirement status x birth year interaction. 237 Five values of regression parameters for nonrespon¬ dents drawn from their posterior distribution. 237 Five imputed values of log(l + drinks/day) for each of the 74 non-followed-up nonrespondents. 238 Sets of least-squares estimates from the five data sets completed by imputation. 239 Repeated-imputation estimates, standard errors, and percentages of missing information for the regression of log(l + drinks/day) oe retirement status, birth year, and retirement status X birth year interaction. 239
any_adam_object 1
author Rubin, Donald B. 1943-
author_GND (DE-588)131607618
author_facet Rubin, Donald B. 1943-
author_role aut
author_sort Rubin, Donald B. 1943-
author_variant d b r db dbr
building Verbundindex
bvnumber BV021812894
callnumber-first H - Social Science
callnumber-label HA31
callnumber-raw HA31.2
callnumber-search HA31.2
callnumber-sort HA 231.2
callnumber-subject HA - Statistics
classification_rvk QH 235
QH 244
SK 840
classification_tum MAT 625f
ctrlnum (OCoLC)56214438
(DE-599)BVBBV021812894
dewey-full 001.4/22
001.422
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 001 - Knowledge
dewey-raw 001.4/22
001.422
dewey-search 001.4/22
001.422
dewey-sort 11.4 222
dewey-tens 000 - Computer science, information, general works
discipline Allgemeines
Mathematik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03028nam a2200757 c 4500</leader><controlfield tag="001">BV021812894</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230704 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">061115s2004 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471655740</subfield><subfield code="9">0-471-65574-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56214438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021812894</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-N32</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-578</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HA31.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.4/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.422</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 235</subfield><subfield code="0">(DE-625)141550:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 244</subfield><subfield code="0">(DE-625)141558:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 625f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rubin, Donald B.</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)131607618</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple imputation for nonresponse in surveys</subfield><subfield code="c">Donald B. Rubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ. [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 287 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley classics library edition</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ontbrekende gegevens</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Survey-onderzoek</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple imputation (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonresponse (Statistics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social surveys</subfield><subfield code="x">Response rate</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenerhebung</subfield><subfield code="0">(DE-588)4155272-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ausreißerwert</subfield><subfield code="0">(DE-588)4143602-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Umfrage</subfield><subfield code="0">(DE-588)4005227-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Imputationstechnik</subfield><subfield code="0">(DE-588)4609617-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Non-response-Problem</subfield><subfield code="0">(DE-588)4133974-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Antwortverweigerung</subfield><subfield code="0">(DE-588)4343644-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schätztheorie</subfield><subfield code="0">(DE-588)4121608-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Imputationstechnik</subfield><subfield code="0">(DE-588)4609617-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Umfrage</subfield><subfield code="0">(DE-588)4005227-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Antwortverweigerung</subfield><subfield code="0">(DE-588)4343644-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Imputationstechnik</subfield><subfield code="0">(DE-588)4609617-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Umfrage</subfield><subfield code="0">(DE-588)4005227-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Non-response-Problem</subfield><subfield code="0">(DE-588)4133974-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Imputationstechnik</subfield><subfield code="0">(DE-588)4609617-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Datenerhebung</subfield><subfield code="0">(DE-588)4155272-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Ausreißerwert</subfield><subfield code="0">(DE-588)4143602-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Onlineausgabe</subfield><subfield code="z">978-0-470-31669-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=015025147&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015025147</subfield></datafield></record></collection>
id DE-604.BV021812894
illustrated Not Illustrated
indexdate 2024-12-20T12:42:38Z
institution BVB
isbn 0471655740
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-015025147
oclc_num 56214438
open_access_boolean
owner DE-N32
DE-473
DE-BY-UBG
DE-11
DE-188
DE-578
DE-19
DE-BY-UBM
owner_facet DE-N32
DE-473
DE-BY-UBG
DE-11
DE-188
DE-578
DE-19
DE-BY-UBM
physical XXIX, 287 S.
publishDate 2004
publishDateSearch 2004
publishDateSort 2004
publisher Wiley
record_format marc
series2 Wiley classics library edition
spellingShingle Rubin, Donald B. 1943-
Multiple imputation for nonresponse in surveys
Ontbrekende gegevens gtt
Survey-onderzoek gtt
Multiple imputation (Statistics)
Nonresponse (Statistics)
Social surveys Response rate
Datenerhebung (DE-588)4155272-6 gnd
Ausreißerwert (DE-588)4143602-7 gnd
Umfrage (DE-588)4005227-8 gnd
Statistik (DE-588)4056995-0 gnd
Imputationstechnik (DE-588)4609617-6 gnd
Schätztheorie (DE-588)4121608-8 gnd
Non-response-Problem (DE-588)4133974-5 gnd
Antwortverweigerung (DE-588)4343644-4 gnd
subject_GND (DE-588)4155272-6
(DE-588)4143602-7
(DE-588)4005227-8
(DE-588)4056995-0
(DE-588)4609617-6
(DE-588)4121608-8
(DE-588)4133974-5
(DE-588)4343644-4
title Multiple imputation for nonresponse in surveys
title_auth Multiple imputation for nonresponse in surveys
title_exact_search Multiple imputation for nonresponse in surveys
title_full Multiple imputation for nonresponse in surveys Donald B. Rubin
title_fullStr Multiple imputation for nonresponse in surveys Donald B. Rubin
title_full_unstemmed Multiple imputation for nonresponse in surveys Donald B. Rubin
title_short Multiple imputation for nonresponse in surveys
title_sort multiple imputation for nonresponse in surveys
topic Ontbrekende gegevens gtt
Survey-onderzoek gtt
Multiple imputation (Statistics)
Nonresponse (Statistics)
Social surveys Response rate
Datenerhebung (DE-588)4155272-6 gnd
Ausreißerwert (DE-588)4143602-7 gnd
Umfrage (DE-588)4005227-8 gnd
Statistik (DE-588)4056995-0 gnd
Imputationstechnik (DE-588)4609617-6 gnd
Schätztheorie (DE-588)4121608-8 gnd
Non-response-Problem (DE-588)4133974-5 gnd
Antwortverweigerung (DE-588)4343644-4 gnd
topic_facet Ontbrekende gegevens
Survey-onderzoek
Multiple imputation (Statistics)
Nonresponse (Statistics)
Social surveys Response rate
Datenerhebung
Ausreißerwert
Umfrage
Statistik
Imputationstechnik
Schätztheorie
Non-response-Problem
Antwortverweigerung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015025147&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT rubindonaldb multipleimputationfornonresponseinsurveys
  • Verfügbarkeit

‌

Per Fernleihe bestellen Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt