Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Subgroup growth
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Lubotzky, Alexander (VerfasserIn), Segal, Daniel 1947- (VerfasserIn)
Format: Buch
Sprache:Deutsch
Veröffentlicht: Basel [u.a.] Birkhäuser 2003
Schriftenreihe:Progress in mathematics 212
Schlagwörter:
Croissance de sous-groupes (Mathématiques)
Groupes infinis
Teoria dos grupos
Álgebra
Infinite groups
Subgroup growth (Mathematics)
Asymptotik
Untergruppe
Unendliche Gruppe
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441681&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XXII, 453 S. 940 gr.
ISBN:3764369892
Internformat

MARC

LEADER 00000nam a2200000 cb4500
001 BV017322978
003 DE-604
005 20151005
007 t|
008 030715s2003 xx |||| |||| 00||| ger d
016 7 |a 968056849  |2 DE-101 
020 |a 3764369892  |9 3-7643-6989-2 
035 |a (OCoLC)51861897 
035 |a (DE-599)BVBBV017322978 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a ger 
049 |a DE-355  |a DE-20  |a DE-11  |a DE-384  |a DE-188 
050 0 |a QA178 
082 0 |a 512/.2  |2 21 
084 |a SK 260  |0 (DE-625)143227:  |2 rvk 
084 |a 510  |2 sdnb 
100 1 |a Lubotzky, Alexander  |e Verfasser  |4 aut 
245 1 0 |a Subgroup growth  |c Alexander Lubotzky ; Dan Segal 
264 1 |a Basel [u.a.]  |b Birkhäuser  |c 2003 
300 |a XXII, 453 S.  |b 940 gr. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Progress in mathematics  |v 212 
650 4 |a Croissance de sous-groupes (Mathématiques) 
650 4 |a Groupes infinis 
650 7 |a Teoria dos grupos  |2 larpcal 
650 7 |a Álgebra  |2 larpcal 
650 4 |a Infinite groups 
650 4 |a Subgroup growth (Mathematics) 
650 0 7 |a Asymptotik  |0 (DE-588)4126634-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Untergruppe  |0 (DE-588)4224972-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Unendliche Gruppe  |0 (DE-588)4375539-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Unendliche Gruppe  |0 (DE-588)4375539-2  |D s 
689 0 1 |a Untergruppe  |0 (DE-588)4224972-7  |D s 
689 0 2 |a Asymptotik  |0 (DE-588)4126634-1  |D s 
689 0 |5 DE-604 
700 1 |a Segal, Daniel  |d 1947-  |e Verfasser  |0 (DE-588)133203670  |4 aut 
830 0 |a Progress in mathematics  |v 212  |w (DE-604)BV000004120  |9 212 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441681&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-010441681 

Datensatz im Suchindex

DE-BY-UBR_call_number 80/SK 260 L929
8019/SK 260 L929
DE-BY-UBR_katkey 3447028
DE-BY-UBR_location UB Lesesaal Mathematik
UB Handapparat Mathematik Prof. Friedl 1
DE-BY-UBR_media_number 069030585215
TEMP12304294
_version_ 1835114923096539136
adam_text Contents Preface xv Notation xxi 0 Introduction and Overview 1 0.1 Preliminary comments and definitions 2 0.2 Overview of the chapters 3 0.3 On CFSG 8 0.4 The windows 9 0.5 The notes 9 1 Basic Techniques of Subgroup Counting 11 1.1 Permutation representations 12 1.2 Quotients and subgroups 13 1.3 Group extensions 14 1.4 Nilpotent and soluble groups 20 1.5 Abelian groups I 22 1.6 Finite p groups 24 1.7 Sylow s theorem 26 1.8 Restricting to soluble subgroups 28 1.9 Applications of the minimal index 29 1.10 Abelian groups II 31 1.11 Growth types 34 Notes 36 2 Free Groups 37 2.1 The subgroup growth of free groups 39 2.2 Subnormal subgroups 42 2.3 Counting d generator finite groups 43 Notes 50 3 Groups with Exponential Subgroup Growth 51 3.1 Upper bounds 55 3.2 Lower bounds 58 3.3 Free pro p groups 61 x Contents 3.4 Normal subgroups in free pro p groups 63 3.5 Relations in p groups and Lie algebras 69 Notes 72 4 Pro p Groups 73 4.1 Pro p groups with polynomial subgroup growth 74 4.2 Pro p groups with slow subgroup growth 77 4.3 The groups SL^(Fp[[t]]) 80 4.4 A perfect groups 83 4.5 The Nottingham group 86 4.6 Finitely presented pro p groups 86 Notes 90 5 Finitely Generated Groups with Polynomial Subgroup Growth ... 91 5.1 Preliminary observations 94 5.2 Linear groups with PSG 96 5.3 Upper chief factors 98 5.4 Groups of prosoluble type 101 5.5 Groups of finite upper rank 102 5.6 The degree of polynomial subgroup growth 104 Notes 108 6 Congruence Subgroups Ill 6.1 The characteristic 0 case 115 6.2 The positive characteristic case 121 6.3 Perfect Lie algebras 125 6.4 Normal congruence subgroups 128 Notes 132 7 The Generalized Congruence Subgroup Problem 133 7.1 The congruence subgroup problem 136 7.2 Subgroup growth of lattices 141 7.3 Counting hyperbolic manifolds 149 Notes 151 8 Linear Groups 153 8.1 Subgroup growth, characteristic 0 155 8.2 Residually nilpotent groups 156 8.3 Subgroup growth, characteristic p 156 8.4 Normal subgroup growth 158 Notes 160 9 Soluble Groups 161 9.1 Metabelian groups 162 9.2 Residually nilpotent groups 164 9.3 Some finitely presented metabelian groups 167 9.4 Normal subgroup growth in metabelian groups 172 Notes 175 Contents xi 10 Proflnite Groups with Polynomial Subgroup Growth 177 10.1 Upper rank 180 10.2 Profinite groups with wPSG: structure 181 10.3 Quasi semisimple groups 187 10.4 Profinite groups with wPSG: characterization 194 10.5 Weak PSG = PSG 197 Notes 200 11 Probabilistic Methods 201 11.1 The probability measure 205 11.2 Generation probabilities 207 11.3 Maximal subgroups 209 11.4 Further applications 211 11.5 Pro p groups 214 Notes 217 12 Other Growth Conditions 219 12.1 Rank and bounded generation 225 12.2 Adelic groups 226 12.3 The structure of finite linear groups 229 12.4 Composition factors 230 12.5 BG, PIG and subgroup growth 233 12.6 Residually nilpotent groups 234 12.7 Arithmetic groups and the CSP 236 12.8 Examples 237 Notes 241 13 The Growth Spectrum 243 13.1 Products of alternating groups 244 13.2 Some finitely generated permutation groups 248 13.3 Some profinite groups with restricted composition factors . . 255 13.4 Automorphisms of rooted trees 260 Notes 266 14 Explicit Formulas and Asymptotics 269 14.1 Free groups and the modular group 269 14.2 Free products of finite groups 271 14.3 Modular subgroup arithmetic 274 14.4 Surface groups 277 Notes 283 15 Zeta Functions I: Nilpotent Groups 285 15.1 Local zeta functions as p adic integrals 290 15.2 Alternative methods 297 15.3 The zeta function of a nilpotent group 304 Notes 307 xii Contents 16 Zeta Functions II: p adic Analytic Groups 309 16.1 Integration on pro p groups 312 16.2 Counting subgroups in a p adic analytic group 313 16.3 Counting orbits 315 16.4 Counting p groups 316 Notes 318 Windows 1 Finite Group Theory 319 1 Hall subgroups and Sylow bases 319 2 Carter subgroups 320 3 The Fitting subgroup 320 4 The generalized Fitting subgroup 322 5 Tate s theorem 322 6 Rank and p rank 323 7 Schur multiplier 323 8 Powerful p groups 324 9 GL,, and Sym(n) 325 2 Finite Simple Groups 329 1 The list 330 2 Generators 331 3 Subgroups 332 4 Representations 332 5 Automorphisms 334 6 Schur multipliers 335 7 An elementary proof 335 3 Permutation Groups 337 1 Primitive groups 337 2 Groups with restricted sections 338 3 Subgroups of alternating groups 343 4 Profinite Groups 349 1 Completions 350 2 Free profinite groups 352 3 Profinite presentations 353 5 Pro p Groups 357 1 Generators and relations 357 2 Pro p groups of finite rank 359 3 Linear pro p groups over local fields 361 4 Automorphisms of finite p groups 363 5 Hall s enumeration principle 364 Contents xiii 6 Soluble Groups 367 1 Nilpotent groups 367 2 Soluble groups of finite rank 369 3 Finitely generated metabelian groups 372 7 Linear Groups 375 1 Soluble groups 375 2 Jordan s theorem 376 3 Monomial groups 376 4 Finitely generated groups 376 5 Lang s theorem 377 8 Linearity Conditions for Infinite Groups 379 1 Variations on Mal cev s local theorem 379 2 Groups that are residually of bounded rank 383 3 Applications of Ado s theorem 385 9 Strong Approximation for Linear Groups 389 1 A variant of the Strong Approximation Theorem 390 2 Subgroups of SLTl(Fp) 397 3 The Lubotzky alternative 400 4 Strong approximation in positive characteristic 406 10 Primes 409 1 The Prime Number Theorem 409 2 Arithmetic progressions and the Bombieri Vinogradov theorem 411 3 Global fields and Chebotarev s theorem 413 11 Probability 415 12 p adic Integrals and Logic 419 1 Results 419 2 A peek inside the black box 421 Open Problems 425 1 Growth spectrum 425 2 Normal subgroup growth in pro p groups and metabelian groups 428 3 The degree of f.g. nilpotent groups 428 4 Finite extensions 429 5 Soluble groups 429 6 Isospectral groups 429 7 Congruence subgroups, lattices in Lie groups 430 8 Other growth conditions 430 9 Zeta functions 431 Bibliography 433 Index 446
any_adam_object 1
author Lubotzky, Alexander
Segal, Daniel 1947-
author_GND (DE-588)133203670
author_facet Lubotzky, Alexander
Segal, Daniel 1947-
author_role aut
aut
author_sort Lubotzky, Alexander
author_variant a l al
d s ds
building Verbundindex
bvnumber BV017322978
callnumber-first Q - Science
callnumber-label QA178
callnumber-raw QA178
callnumber-search QA178
callnumber-sort QA 3178
callnumber-subject QA - Mathematics
classification_rvk SK 260
ctrlnum (OCoLC)51861897
(DE-599)BVBBV017322978
dewey-full 512/.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.2
dewey-search 512/.2
dewey-sort 3512 12
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01937nam a2200517 cb4500</leader><controlfield tag="001">BV017322978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151005 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">030715s2003 xx |||| |||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">968056849</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764369892</subfield><subfield code="9">3-7643-6989-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)51861897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV017322978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA178</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lubotzky, Alexander</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Subgroup growth</subfield><subfield code="c">Alexander Lubotzky ; Dan Segal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 453 S.</subfield><subfield code="b">940 gr.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">212</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Croissance de sous-groupes (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groupes infinis</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria dos grupos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Álgebra</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgroup growth (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Untergruppe</subfield><subfield code="0">(DE-588)4224972-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendliche Gruppe</subfield><subfield code="0">(DE-588)4375539-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unendliche Gruppe</subfield><subfield code="0">(DE-588)4375539-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Untergruppe</subfield><subfield code="0">(DE-588)4224972-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Asymptotik</subfield><subfield code="0">(DE-588)4126634-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Segal, Daniel</subfield><subfield code="d">1947-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133203670</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">212</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">212</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=010441681&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-010441681</subfield></datafield></record></collection>
id DE-604.BV017322978
illustrated Not Illustrated
indexdate 2024-12-20T11:17:47Z
institution BVB
isbn 3764369892
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-010441681
oclc_num 51861897
open_access_boolean
owner DE-355
DE-BY-UBR
DE-20
DE-11
DE-384
DE-188
owner_facet DE-355
DE-BY-UBR
DE-20
DE-11
DE-384
DE-188
physical XXII, 453 S. 940 gr.
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Birkhäuser
record_format marc
series Progress in mathematics
series2 Progress in mathematics
spellingShingle Lubotzky, Alexander
Segal, Daniel 1947-
Subgroup growth
Progress in mathematics
Croissance de sous-groupes (Mathématiques)
Groupes infinis
Teoria dos grupos larpcal
Álgebra larpcal
Infinite groups
Subgroup growth (Mathematics)
Asymptotik (DE-588)4126634-1 gnd
Untergruppe (DE-588)4224972-7 gnd
Unendliche Gruppe (DE-588)4375539-2 gnd
subject_GND (DE-588)4126634-1
(DE-588)4224972-7
(DE-588)4375539-2
title Subgroup growth
title_auth Subgroup growth
title_exact_search Subgroup growth
title_full Subgroup growth Alexander Lubotzky ; Dan Segal
title_fullStr Subgroup growth Alexander Lubotzky ; Dan Segal
title_full_unstemmed Subgroup growth Alexander Lubotzky ; Dan Segal
title_short Subgroup growth
title_sort subgroup growth
topic Croissance de sous-groupes (Mathématiques)
Groupes infinis
Teoria dos grupos larpcal
Álgebra larpcal
Infinite groups
Subgroup growth (Mathematics)
Asymptotik (DE-588)4126634-1 gnd
Untergruppe (DE-588)4224972-7 gnd
Unendliche Gruppe (DE-588)4375539-2 gnd
topic_facet Croissance de sous-groupes (Mathématiques)
Groupes infinis
Teoria dos grupos
Álgebra
Infinite groups
Subgroup growth (Mathematics)
Asymptotik
Untergruppe
Unendliche Gruppe
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=010441681&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000004120
work_keys_str_mv AT lubotzkyalexander subgroupgrowth
AT segaldaniel subgroupgrowth
  • Verfügbarkeit

‌

Per Fernleihe bestellen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt