Gespeichert in:
Beteilige Person: | |
---|---|
Format: | Buch |
Sprache: | Englisch |
Veröffentlicht: |
Providence, RI
American Mathematical Society
2002
|
Schriftenreihe: | Graduate Studies in Mathematics
46 |
Schlagwörter: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Umfang: | xvi, 507 Seiten |
ISBN: | 9780821831786 082183178X |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV014595359 | ||
003 | DE-604 | ||
005 | 20210518 | ||
007 | t| | ||
008 | 020724s2002 xxu |||| 00||| eng d | ||
010 | |a 2002018346 | ||
020 | |a 9780821831786 |9 978-0-8218-3178-6 | ||
020 | |a 082183178X |9 0-8218-3178-X | ||
035 | |a (OCoLC)49862239 | ||
035 | |a (DE-599)BVBBV014595359 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-824 |a DE-29T |a DE-83 |a DE-11 |a DE-188 |a DE-19 |a DE-20 |a DE-739 | ||
050 | 0 | |a QA331.7 | |
082 | 0 | |a 515/.94 |2 21 | |
082 | 0 | |a 515.94 | |
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a 14-01 |2 msc | ||
084 | |a 22Exx |2 msc | ||
084 | |a 32-01 |2 msc | ||
100 | 1 | |a Taylor, Joseph L. |d 1941- |e Verfasser |0 (DE-588)1017302960 |4 aut | |
245 | 1 | 0 | |a Several complex variables with connections to algebraic geometry and Lie groups |c Joseph L. Taylor |
264 | 1 | |a Providence, RI |b American Mathematical Society |c 2002 | |
300 | |a xvi, 507 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Graduate Studies in Mathematics |v 46 | |
650 | 7 | |a Algebraïsche meetkunde |2 gtt | |
650 | 7 | |a Complexe variabelen |2 gtt | |
650 | 4 | |a Fonctions de plusieurs variables complexes | |
650 | 7 | |a Geometria algébrica |2 larpcal | |
650 | 4 | |a Géométrie algébrique | |
650 | 7 | |a Lie-groepen |2 gtt | |
650 | 4 | |a Functions of several complex variables | |
650 | 4 | |a Geometry, Algebraic | |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 0 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 0 | 2 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-2097-0 |w (DE-604)BV044223335 |
830 | 0 | |a Graduate Studies in Mathematics |v 46 |w (DE-604)BV009739289 |9 46 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-009920454 |
Datensatz im Suchindex
DE-BY-UBR_call_number | 80/SK 780 T243 801/SK 780 T243 |
---|---|
DE-BY-UBR_katkey | 3337147 |
DE-BY-UBR_location | UB Lesesaal Mathematik UB Handapparat Mathematik Prof. E. Kings |
DE-BY-UBR_media_number | 069030784090 TEMP12532842 |
_version_ | 1835094965644951552 |
adam_text | Contents
Preface xiii
Chapter 1. Selected Problems in One Complex Variable 1
§1.1. Preliminaries 2
§1.2. A Simple Problem 2
§1.3. Partitions of Unity 4
§1.4. The Cauchy Riemann Equations 7
§1.5. The Proof of Proposition 1.2.2 10
§1.6. The Mittag Leffler and Weierstrass Theorems 12
§1.7. Conclusions and Comments 16
Exercises 18
Chapter 2. Holomorphic Functions of Several Variables 23
§2.1. Cauchy s Formula and Power Series Expansions 23
§2.2. Hartog s Theorem 26
§2.3. The Cauchy Riemann Equations 29
§2.4. Convergence Theorems 29
§2.5. Domains of Holomorphy 31
Exercises 35
Chapter 3. Local Rings and Varieties 37
§3.1. Rings of Germs of Holomorphic Functions 38
§3.2. Hilbert s Basis Theorem 39
vii
viii Contents
§3.3. The Weierstrass Theorems 40
§3.4. The Local Ring of Holomorphic Functions is Noetherian 44
§3.5. Varieties 45
§3.6. Irreducible Varieties 49
§3.7. Implicit and Inverse Mapping Theorems 50
§3.8. Holomorphic Functions on a Subvariety 55
Exercises 57
Chapter 4. The Nullstellensatz 61
§4.1. Reduction to the Case of Prime Ideals 61
§4.2. Survey of Results on Ring and Field Extensions 62
§4.3. Hilbert s Nullstellensatz 68
§4.4. Finite Branched Holomorphic Covers 72
§4.5. The Nullstellensatz 79
§4.6. Morphisms of Germs of Varieties 87
Exercises 92
Chapter 5. Dimension 95
§5.1. Topological Dimension 95
§5.2. Subvarieties of Codimension 1 97
§5.3. Krull Dimension 99
§5.4. Tangential Dimension 100
§5.5. Dimension and Regularity 103
§5.6. Dimension of Algebraic Varieties 104
§5.7. Algebraic vs. Holomorphic Dimension 108
Exercises 110
Chapter 6. Homological Algebra 113
§6.1. Abelian Categories 113
§6.2. Complexes 119
§6.3. Injective and Projective Resolutions 122
§6.4. Higher Derived Functors 126
§6.5. Ext 131
§6.6. The Category of Modules, Tor 133
§6.7. Hilbert s Syzygy Theorem 137
Exercises 142
Contents ix
Chapter 7. Sheaves and Sheaf Cohomology 145
§7.1. Sheaves 145
§7.2. Morphisms of Sheaves 150
§7.3. Operations on Sheaves 152
§7.4. Sheaf Cohomology 157
§7.5. Classes of Acyclic Sheaves 163
§7.6. Ringed Spaces 168
§7.7. De Rham Cohomology 172
§7.8. Cech Cohomology 174
§7.9. Line Bundles and Cech Cohomology 180
Exercises 182
Chapter 8. Coherent Algebraic Sheaves 185
§8.1. Abstract Varieties 186
§8.2. Localization 189
§8.3. Coherent and Quasi coherent Algebraic Sheaves 194
§8.4. Theorems of Artin Rees and Krull 197
§8.5. The Vanishing Theorem for Quasi coherent Sheaves 199
§8.6. Cohomological Characterization of Affine Varieties 200
§8.7. Morphisms Direct and Inverse Image 204
§8.8. An Open Mapping Theorem 207
Exercises 212
Chapter 9. Coherent Analytic Sheaves 215
§9.1. Coherence in the Analytic Case 215
§9.2. Oka s Theorem 217
§9.3. Ideal Sheaves 221
§9.4. Coherent Sheaves on Varieties 225
§9.5. Morphisms between Coherent Sheaves 226
§9.6. Direct and Inverse Image 229
Exercises 234
Chapter 10. Stein Spaces 237
§10.1. Dolbeault Cohomology 237
§10.2. Chains of Syzygies 243
§10.3. Functional Analysis Preliminaries 245
x Contents
§10.4. Cartan s Factorization Lemma 248
§10.5. Amalgamation of Syzygies 252
§10.6. Stein Spaces 257
Exercises 260
Chapter 11. Frechet Sheaves Cartan s Theorems 263
§11.1. Topological Vector Spaces 264
§11.2. The Topology of H(X) 266
§11.3. Frechet Sheaves 274
§11.4. Cartan s Theorems 277
§11.5. Applications of Cartan s Theorems 281
§11.6. Invertible Groups and Line Bundles 283
§11.7. Meromorphic Functions 284
§11.8. Holomorphic Functional Calculus 288
§11.9. Localization 298
§11.10. Coherent Sheaves on Compact Varieties 300
§11.11. Schwartz s Theorem 302
Exercises 309
Chapter 12. Projective Varieties 313
§12.1. Complex Projective Space 313
§12.2. Projective Space as an Algebraic and a Holomorphic Variety 314
§12.3. The Sheaves O(k) and H(h) 317
§12.4. Applications of the Sheaves O(k) 323
§12.5. Embeddings in Projective Space 325
Exercises 328
Chapter 13. Algebraic vs. Analytic Serre s Theorems 331
§13.1. Faithfully Flat Ring Extensions 331
§13.2. Completion of Local Rings 334
§13.3. Local Rings of Algebraic vs. Holomorphic Functions 338
§13.4. The Algebraic to Holomorphic Functor 341
§13.5. Serre s Theorems 344
§13.6. Applications 351
Exercises 355
Contents xi
Chapter 14. Lie Groups and Their Representations 357
§14.1. Topological Groups 358
§14.2. Compact Topological Groups 363
§14.3. Lie Groups and Lie Algebras 376
§14.4. Lie Algebras 385
§14.5. Structure of Semisimple Lie Algebras 392
§14.6. Representations of s[2(C) 400
§14.7. Representations of Semisimple Lie Algebras 404
§14.8. Compact Semisimple Groups 409
Exercises 416
Chapter 15. Algebraic Groups 419
§15.1. Algebraic Groups and Their Representations 419
§15.2. Quotients and Group Actions 423
§15.3. Existence of the Quotient 427
§15.4. Jordan Decomposition 430
§15.5. Tori 433
§15.6. Solvable Algebraic Groups 437
§15.7. Semisimple Groups and Borel Subgroups 442
§15.8. Complex Semisimple Lie Groups 451
Exercises 456
Chapter 16. The Borel Weil Bott Theorem 459
§16.1. Vector Bundles and Induced Representations 460
§16.2. Equivariant Line Bundles on the Flag Variety 464
§16.3. The Casimir Operator 469
§16.4. The Borel Weil Theorem 474
§16.5. The Borel Weil Bott Theorem 478
§16.6. Consequences for Real Semisimple Lie Groups 483
§16.7. Infinite Dimensional Representations 484
Exercises 493
Bibliography 197
Index 501
|
any_adam_object | 1 |
author | Taylor, Joseph L. 1941- |
author_GND | (DE-588)1017302960 |
author_facet | Taylor, Joseph L. 1941- |
author_role | aut |
author_sort | Taylor, Joseph L. 1941- |
author_variant | j l t jl jlt |
building | Verbundindex |
bvnumber | BV014595359 |
callnumber-first | Q - Science |
callnumber-label | QA331 |
callnumber-raw | QA331.7 |
callnumber-search | QA331.7 |
callnumber-sort | QA 3331.7 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 780 |
ctrlnum | (OCoLC)49862239 (DE-599)BVBBV014595359 |
dewey-full | 515/.94 515.94 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.94 515.94 |
dewey-search | 515/.94 515.94 |
dewey-sort | 3515 294 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02399nam a2200601zcb4500</leader><controlfield tag="001">BV014595359</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210518 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020724s2002 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002018346</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821831786</subfield><subfield code="9">978-0-8218-3178-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">082183178X</subfield><subfield code="9">0-8218-3178-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49862239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014595359</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.94</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.94</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22Exx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taylor, Joseph L.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017302960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several complex variables with connections to algebraic geometry and Lie groups</subfield><subfield code="c">Joseph L. Taylor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 507 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Studies in Mathematics</subfield><subfield code="v">46</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraïsche meetkunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complexe variabelen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions de plusieurs variables complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-2097-0</subfield><subfield code="w">(DE-604)BV044223335</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Studies in Mathematics</subfield><subfield code="v">46</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">46</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009920454</subfield></datafield></record></collection> |
id | DE-604.BV014595359 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T11:05:28Z |
institution | BVB |
isbn | 9780821831786 082183178X |
language | English |
lccn | 2002018346 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009920454 |
oclc_num | 49862239 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-824 DE-29T DE-83 DE-11 DE-188 DE-19 DE-BY-UBM DE-20 DE-739 |
owner_facet | DE-355 DE-BY-UBR DE-824 DE-29T DE-83 DE-11 DE-188 DE-19 DE-BY-UBM DE-20 DE-739 |
physical | xvi, 507 Seiten |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | American Mathematical Society |
record_format | marc |
series | Graduate Studies in Mathematics |
series2 | Graduate Studies in Mathematics |
spellingShingle | Taylor, Joseph L. 1941- Several complex variables with connections to algebraic geometry and Lie groups Graduate Studies in Mathematics Algebraïsche meetkunde gtt Complexe variabelen gtt Fonctions de plusieurs variables complexes Geometria algébrica larpcal Géométrie algébrique Lie-groepen gtt Functions of several complex variables Geometry, Algebraic Funktion Mathematik (DE-588)4071510-3 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
subject_GND | (DE-588)4071510-3 (DE-588)4001161-6 (DE-588)4169285-8 |
title | Several complex variables with connections to algebraic geometry and Lie groups |
title_auth | Several complex variables with connections to algebraic geometry and Lie groups |
title_exact_search | Several complex variables with connections to algebraic geometry and Lie groups |
title_full | Several complex variables with connections to algebraic geometry and Lie groups Joseph L. Taylor |
title_fullStr | Several complex variables with connections to algebraic geometry and Lie groups Joseph L. Taylor |
title_full_unstemmed | Several complex variables with connections to algebraic geometry and Lie groups Joseph L. Taylor |
title_short | Several complex variables with connections to algebraic geometry and Lie groups |
title_sort | several complex variables with connections to algebraic geometry and lie groups |
topic | Algebraïsche meetkunde gtt Complexe variabelen gtt Fonctions de plusieurs variables complexes Geometria algébrica larpcal Géométrie algébrique Lie-groepen gtt Functions of several complex variables Geometry, Algebraic Funktion Mathematik (DE-588)4071510-3 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
topic_facet | Algebraïsche meetkunde Complexe variabelen Fonctions de plusieurs variables complexes Geometria algébrica Géométrie algébrique Lie-groepen Functions of several complex variables Geometry, Algebraic Funktion Mathematik Algebraische Geometrie Mehrere komplexe Variable |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV009739289 |
work_keys_str_mv | AT taylorjosephl severalcomplexvariableswithconnectionstoalgebraicgeometryandliegroups |