Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Several complex variables with...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Taylor, Joseph L. 1941- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Providence, RI American Mathematical Society 2002
Schriftenreihe:Graduate Studies in Mathematics 46
Schlagwörter:
Algebraïsche meetkunde
Complexe variabelen
Fonctions de plusieurs variables complexes
Geometria algébrica
Géométrie algébrique
Lie-groepen
Functions of several complex variables
Geometry, Algebraic
Funktion > Mathematik
Algebraische Geometrie
Mehrere komplexe Variable
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:xvi, 507 Seiten
ISBN:9780821831786
082183178X
Internformat

MARC

LEADER 00000nam a2200000zcb4500
001 BV014595359
003 DE-604
005 20210518
007 t|
008 020724s2002 xxu |||| 00||| eng d
010 |a 2002018346 
020 |a 9780821831786  |9 978-0-8218-3178-6 
020 |a 082183178X  |9 0-8218-3178-X 
035 |a (OCoLC)49862239 
035 |a (DE-599)BVBBV014595359 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-355  |a DE-824  |a DE-29T  |a DE-83  |a DE-11  |a DE-188  |a DE-19  |a DE-20  |a DE-739 
050 0 |a QA331.7 
082 0 |a 515/.94  |2 21 
082 0 |a 515.94 
084 |a SK 780  |0 (DE-625)143255:  |2 rvk 
084 |a 14-01  |2 msc 
084 |a 22Exx  |2 msc 
084 |a 32-01  |2 msc 
100 1 |a Taylor, Joseph L.  |d 1941-  |e Verfasser  |0 (DE-588)1017302960  |4 aut 
245 1 0 |a Several complex variables with connections to algebraic geometry and Lie groups  |c Joseph L. Taylor 
264 1 |a Providence, RI  |b American Mathematical Society  |c 2002 
300 |a xvi, 507 Seiten 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Graduate Studies in Mathematics  |v 46 
650 7 |a Algebraïsche meetkunde  |2 gtt 
650 7 |a Complexe variabelen  |2 gtt 
650 4 |a Fonctions de plusieurs variables complexes 
650 7 |a Geometria algébrica  |2 larpcal 
650 4 |a Géométrie algébrique 
650 7 |a Lie-groepen  |2 gtt 
650 4 |a Functions of several complex variables 
650 4 |a Geometry, Algebraic 
650 0 7 |a Funktion  |g Mathematik  |0 (DE-588)4071510-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Mehrere komplexe Variable  |0 (DE-588)4169285-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Funktion  |g Mathematik  |0 (DE-588)4071510-3  |D s 
689 0 1 |a Mehrere komplexe Variable  |0 (DE-588)4169285-8  |D s 
689 0 2 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 0 |5 DE-604 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-1-4704-2097-0  |w (DE-604)BV044223335 
830 0 |a Graduate Studies in Mathematics  |v 46  |w (DE-604)BV009739289  |9 46 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009920454 

Datensatz im Suchindex

DE-BY-UBR_call_number 80/SK 780 T243
801/SK 780 T243
DE-BY-UBR_katkey 3337147
DE-BY-UBR_location UB Lesesaal Mathematik
UB Handapparat Mathematik Prof. E. Kings
DE-BY-UBR_media_number 069030784090
TEMP12532842
_version_ 1835094965644951552
adam_text Contents Preface xiii Chapter 1. Selected Problems in One Complex Variable 1 §1.1. Preliminaries 2 §1.2. A Simple Problem 2 §1.3. Partitions of Unity 4 §1.4. The Cauchy Riemann Equations 7 §1.5. The Proof of Proposition 1.2.2 10 §1.6. The Mittag Leffler and Weierstrass Theorems 12 §1.7. Conclusions and Comments 16 Exercises 18 Chapter 2. Holomorphic Functions of Several Variables 23 §2.1. Cauchy s Formula and Power Series Expansions 23 §2.2. Hartog s Theorem 26 §2.3. The Cauchy Riemann Equations 29 §2.4. Convergence Theorems 29 §2.5. Domains of Holomorphy 31 Exercises 35 Chapter 3. Local Rings and Varieties 37 §3.1. Rings of Germs of Holomorphic Functions 38 §3.2. Hilbert s Basis Theorem 39 vii viii Contents §3.3. The Weierstrass Theorems 40 §3.4. The Local Ring of Holomorphic Functions is Noetherian 44 §3.5. Varieties 45 §3.6. Irreducible Varieties 49 §3.7. Implicit and Inverse Mapping Theorems 50 §3.8. Holomorphic Functions on a Subvariety 55 Exercises 57 Chapter 4. The Nullstellensatz 61 §4.1. Reduction to the Case of Prime Ideals 61 §4.2. Survey of Results on Ring and Field Extensions 62 §4.3. Hilbert s Nullstellensatz 68 §4.4. Finite Branched Holomorphic Covers 72 §4.5. The Nullstellensatz 79 §4.6. Morphisms of Germs of Varieties 87 Exercises 92 Chapter 5. Dimension 95 §5.1. Topological Dimension 95 §5.2. Subvarieties of Codimension 1 97 §5.3. Krull Dimension 99 §5.4. Tangential Dimension 100 §5.5. Dimension and Regularity 103 §5.6. Dimension of Algebraic Varieties 104 §5.7. Algebraic vs. Holomorphic Dimension 108 Exercises 110 Chapter 6. Homological Algebra 113 §6.1. Abelian Categories 113 §6.2. Complexes 119 §6.3. Injective and Projective Resolutions 122 §6.4. Higher Derived Functors 126 §6.5. Ext 131 §6.6. The Category of Modules, Tor 133 §6.7. Hilbert s Syzygy Theorem 137 Exercises 142 Contents ix Chapter 7. Sheaves and Sheaf Cohomology 145 §7.1. Sheaves 145 §7.2. Morphisms of Sheaves 150 §7.3. Operations on Sheaves 152 §7.4. Sheaf Cohomology 157 §7.5. Classes of Acyclic Sheaves 163 §7.6. Ringed Spaces 168 §7.7. De Rham Cohomology 172 §7.8. Cech Cohomology 174 §7.9. Line Bundles and Cech Cohomology 180 Exercises 182 Chapter 8. Coherent Algebraic Sheaves 185 §8.1. Abstract Varieties 186 §8.2. Localization 189 §8.3. Coherent and Quasi coherent Algebraic Sheaves 194 §8.4. Theorems of Artin Rees and Krull 197 §8.5. The Vanishing Theorem for Quasi coherent Sheaves 199 §8.6. Cohomological Characterization of Affine Varieties 200 §8.7. Morphisms Direct and Inverse Image 204 §8.8. An Open Mapping Theorem 207 Exercises 212 Chapter 9. Coherent Analytic Sheaves 215 §9.1. Coherence in the Analytic Case 215 §9.2. Oka s Theorem 217 §9.3. Ideal Sheaves 221 §9.4. Coherent Sheaves on Varieties 225 §9.5. Morphisms between Coherent Sheaves 226 §9.6. Direct and Inverse Image 229 Exercises 234 Chapter 10. Stein Spaces 237 §10.1. Dolbeault Cohomology 237 §10.2. Chains of Syzygies 243 §10.3. Functional Analysis Preliminaries 245 x Contents §10.4. Cartan s Factorization Lemma 248 §10.5. Amalgamation of Syzygies 252 §10.6. Stein Spaces 257 Exercises 260 Chapter 11. Frechet Sheaves Cartan s Theorems 263 §11.1. Topological Vector Spaces 264 §11.2. The Topology of H(X) 266 §11.3. Frechet Sheaves 274 §11.4. Cartan s Theorems 277 §11.5. Applications of Cartan s Theorems 281 §11.6. Invertible Groups and Line Bundles 283 §11.7. Meromorphic Functions 284 §11.8. Holomorphic Functional Calculus 288 §11.9. Localization 298 §11.10. Coherent Sheaves on Compact Varieties 300 §11.11. Schwartz s Theorem 302 Exercises 309 Chapter 12. Projective Varieties 313 §12.1. Complex Projective Space 313 §12.2. Projective Space as an Algebraic and a Holomorphic Variety 314 §12.3. The Sheaves O(k) and H(h) 317 §12.4. Applications of the Sheaves O(k) 323 §12.5. Embeddings in Projective Space 325 Exercises 328 Chapter 13. Algebraic vs. Analytic Serre s Theorems 331 §13.1. Faithfully Flat Ring Extensions 331 §13.2. Completion of Local Rings 334 §13.3. Local Rings of Algebraic vs. Holomorphic Functions 338 §13.4. The Algebraic to Holomorphic Functor 341 §13.5. Serre s Theorems 344 §13.6. Applications 351 Exercises 355 Contents xi Chapter 14. Lie Groups and Their Representations 357 §14.1. Topological Groups 358 §14.2. Compact Topological Groups 363 §14.3. Lie Groups and Lie Algebras 376 §14.4. Lie Algebras 385 §14.5. Structure of Semisimple Lie Algebras 392 §14.6. Representations of s[2(C) 400 §14.7. Representations of Semisimple Lie Algebras 404 §14.8. Compact Semisimple Groups 409 Exercises 416 Chapter 15. Algebraic Groups 419 §15.1. Algebraic Groups and Their Representations 419 §15.2. Quotients and Group Actions 423 §15.3. Existence of the Quotient 427 §15.4. Jordan Decomposition 430 §15.5. Tori 433 §15.6. Solvable Algebraic Groups 437 §15.7. Semisimple Groups and Borel Subgroups 442 §15.8. Complex Semisimple Lie Groups 451 Exercises 456 Chapter 16. The Borel Weil Bott Theorem 459 §16.1. Vector Bundles and Induced Representations 460 §16.2. Equivariant Line Bundles on the Flag Variety 464 §16.3. The Casimir Operator 469 §16.4. The Borel Weil Theorem 474 §16.5. The Borel Weil Bott Theorem 478 §16.6. Consequences for Real Semisimple Lie Groups 483 §16.7. Infinite Dimensional Representations 484 Exercises 493 Bibliography 197 Index 501
any_adam_object 1
author Taylor, Joseph L. 1941-
author_GND (DE-588)1017302960
author_facet Taylor, Joseph L. 1941-
author_role aut
author_sort Taylor, Joseph L. 1941-
author_variant j l t jl jlt
building Verbundindex
bvnumber BV014595359
callnumber-first Q - Science
callnumber-label QA331
callnumber-raw QA331.7
callnumber-search QA331.7
callnumber-sort QA 3331.7
callnumber-subject QA - Mathematics
classification_rvk SK 780
ctrlnum (OCoLC)49862239
(DE-599)BVBBV014595359
dewey-full 515/.94
515.94
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.94
515.94
dewey-search 515/.94
515.94
dewey-sort 3515 294
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02399nam a2200601zcb4500</leader><controlfield tag="001">BV014595359</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210518 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020724s2002 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2002018346</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780821831786</subfield><subfield code="9">978-0-8218-3178-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">082183178X</subfield><subfield code="9">0-8218-3178-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49862239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014595359</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA331.7</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.94</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.94</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">22Exx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taylor, Joseph L.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1017302960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several complex variables with connections to algebraic geometry and Lie groups</subfield><subfield code="c">Joseph L. Taylor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 507 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Studies in Mathematics</subfield><subfield code="v">46</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraïsche meetkunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Complexe variabelen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fonctions de plusieurs variables complexes</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometria algébrica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie algébrique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie-groepen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of several complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-2097-0</subfield><subfield code="w">(DE-604)BV044223335</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Studies in Mathematics</subfield><subfield code="v">46</subfield><subfield code="w">(DE-604)BV009739289</subfield><subfield code="9">46</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009920454&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009920454</subfield></datafield></record></collection>
id DE-604.BV014595359
illustrated Not Illustrated
indexdate 2024-12-20T11:05:28Z
institution BVB
isbn 9780821831786
082183178X
language English
lccn 2002018346
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009920454
oclc_num 49862239
open_access_boolean
owner DE-355
DE-BY-UBR
DE-824
DE-29T
DE-83
DE-11
DE-188
DE-19
DE-BY-UBM
DE-20
DE-739
owner_facet DE-355
DE-BY-UBR
DE-824
DE-29T
DE-83
DE-11
DE-188
DE-19
DE-BY-UBM
DE-20
DE-739
physical xvi, 507 Seiten
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher American Mathematical Society
record_format marc
series Graduate Studies in Mathematics
series2 Graduate Studies in Mathematics
spellingShingle Taylor, Joseph L. 1941-
Several complex variables with connections to algebraic geometry and Lie groups
Graduate Studies in Mathematics
Algebraïsche meetkunde gtt
Complexe variabelen gtt
Fonctions de plusieurs variables complexes
Geometria algébrica larpcal
Géométrie algébrique
Lie-groepen gtt
Functions of several complex variables
Geometry, Algebraic
Funktion Mathematik (DE-588)4071510-3 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
Mehrere komplexe Variable (DE-588)4169285-8 gnd
subject_GND (DE-588)4071510-3
(DE-588)4001161-6
(DE-588)4169285-8
title Several complex variables with connections to algebraic geometry and Lie groups
title_auth Several complex variables with connections to algebraic geometry and Lie groups
title_exact_search Several complex variables with connections to algebraic geometry and Lie groups
title_full Several complex variables with connections to algebraic geometry and Lie groups Joseph L. Taylor
title_fullStr Several complex variables with connections to algebraic geometry and Lie groups Joseph L. Taylor
title_full_unstemmed Several complex variables with connections to algebraic geometry and Lie groups Joseph L. Taylor
title_short Several complex variables with connections to algebraic geometry and Lie groups
title_sort several complex variables with connections to algebraic geometry and lie groups
topic Algebraïsche meetkunde gtt
Complexe variabelen gtt
Fonctions de plusieurs variables complexes
Geometria algébrica larpcal
Géométrie algébrique
Lie-groepen gtt
Functions of several complex variables
Geometry, Algebraic
Funktion Mathematik (DE-588)4071510-3 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
Mehrere komplexe Variable (DE-588)4169285-8 gnd
topic_facet Algebraïsche meetkunde
Complexe variabelen
Fonctions de plusieurs variables complexes
Geometria algébrica
Géométrie algébrique
Lie-groepen
Functions of several complex variables
Geometry, Algebraic
Funktion Mathematik
Algebraische Geometrie
Mehrere komplexe Variable
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009920454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV009739289
work_keys_str_mv AT taylorjosephl severalcomplexvariableswithconnectionstoalgebraicgeometryandliegroups
  • Verfügbarkeit

‌

Per Fernleihe bestellen
Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt