Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Regularity results for nonline...
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Regularity results for nonlinear elliptic systems and applications:
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Bensoussan, Alain 1940- (VerfasserIn), Frehse, Jens 1943- (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London Springer 2002
Schriftenreihe:Applied mathematical sciences 151
Schlagwörter:
Elliptische systemen
Niet-lineaire vergelijkingen
Équations différentielles elliptiques - Solutions numériques
Équations différentielles non linéaires - Solutions numériques
Differential equations, Elliptic > Numerical solutions
Differential equations, Nonlinear > Numerical solutions
Elliptisches System
Nichtlineare elliptische Differentialgleichung
Regularität
Lösung > Mathematik
Nichtlineares System
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009831226&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XII, 440 S.
ISBN:3540677569
Internformat

MARC

LEADER 00000nam a22000008cb4500
001 BV014330628
003 DE-604
005 20020716
007 t|
008 020604s2002 gw |||| 00||| eng d
016 7 |a 96422500X  |2 DE-101 
020 |a 3540677569  |9 3-540-67756-9 
035 |a (OCoLC)49679386 
035 |a (DE-599)BVBBV014330628 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a gw  |c DE 
049 |a DE-20  |a DE-384  |a DE-355  |a DE-29T  |a DE-703  |a DE-19  |a DE-706  |a DE-521  |a DE-634  |a DE-83  |a DE-11  |a DE-188 
050 0 |a QA1 QA377.A647 no. 151 
082 0 |a 510 s 515/.353 21 
082 0 |a 510  |2 21 
082 0 |a 515/.353  |2 21 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a SK 560  |0 (DE-625)143246:  |2 rvk 
084 |a 27  |2 sdnb 
084 |a 35Q30  |2 msc 
084 |a 35J60  |2 msc 
100 1 |a Bensoussan, Alain  |d 1940-  |e Verfasser  |0 (DE-588)13295947X  |4 aut 
245 1 0 |a Regularity results for nonlinear elliptic systems and applications  |c Alain Bensoussan ; Jens Frehse 
264 1 |a Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London  |b Springer  |c 2002 
300 |a XII, 440 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Applied mathematical sciences  |v 151 
650 7 |a Elliptische systemen  |2 gtt 
650 7 |a Niet-lineaire vergelijkingen  |2 gtt 
650 4 |a Équations différentielles elliptiques - Solutions numériques 
650 4 |a Équations différentielles non linéaires - Solutions numériques 
650 4 |a Differential equations, Elliptic -- Numerical solutions 
650 4 |a Differential equations, Nonlinear -- Numerical solutions 
650 0 7 |a Elliptisches System  |0 (DE-588)4121184-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare elliptische Differentialgleichung  |0 (DE-588)4310554-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Regularität  |0 (DE-588)4049074-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Lösung  |g Mathematik  |0 (DE-588)4120678-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineares System  |0 (DE-588)4042110-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare elliptische Differentialgleichung  |0 (DE-588)4310554-3  |D s 
689 0 |5 DE-604 
689 1 0 |a Elliptisches System  |0 (DE-588)4121184-4  |D s 
689 1 1 |a Nichtlineares System  |0 (DE-588)4042110-7  |D s 
689 1 2 |a Lösung  |g Mathematik  |0 (DE-588)4120678-2  |D s 
689 1 3 |a Regularität  |0 (DE-588)4049074-9  |D s 
689 1 |5 DE-604 
700 1 |a Frehse, Jens  |d 1943-  |e Verfasser  |0 (DE-588)106319930  |4 aut 
830 0 |a Applied mathematical sciences  |v 151  |w (DE-604)BV000005274  |9 151 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009831226&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009831226 

Datensatz im Suchindex

_version_ 1819332472479940608
adam_text Titel: Regularity results for nonlinear elliptic systems and applications Autor: Bensoussan, Alain Jahr: 2002 Contents Preface v 1. General Technical Results................................ 1 1.1 Introduction........................................... 1 1.1.1 Function Spaces.................................. 1 1.1.2 Regularity of Domains............................ 10 1.1.3 Poincare Inequality............................... 12 1.1.4 Covering of Domains ............................. 18 1.2 Useful Techniques...................................... 25 1.2.1 Reverse Holder s Inequality........................ 25 1.2.2 Gehring s Result................................. 36 1.2.3 Hole-Filling Technique of Widman.................. 38 1.2.4 Inhomogeneous Hole-Filling........................ 40 1.3 Green Function ........................................ 44 1.3.1 Statement of Results.............................. 44 1.3.2 Proof of Theorem 1.26 ........................... 45 1.3.3 Estimates on logG............................... 46 1.3.4 Estimates on Positive and Negative Powers of G...... 49 1.3.5 Harnack s Inequality.............................. 52 1.3.6 Proof of Theorem 1.27............................ 57 2. General Regularity Results............................... 63 2.1 Introduction........................................... 63 2.2 Obtaining W1* Regularity.............................. 63 2.2.1 Linear Equations................................. 63 2.2.2 Nonlinear Problems............................... 66 2.3 Obtaining Cs Regularity................................ 70 2.3.1 L°° Bounds for Linear Problems ................... 70 2.3.2 Cs Regularity for Dirichlet Problems ............... 73 2.3.3 Cs Regularity for Linear Mixed Boundary Value Problems........................................ 82 2.3.4 Cs Regularity in the Case n = 2.................... 85 2.4 Maximum Principle..................................... 87 2.4.1 Assumptions..................................... 87 viii Contents 2.4.2 Proof of Theorem 2.16............................ 88 2.5 More Regularity........................................ 89 2.5.1 From C 5 and W^ P0, po 2, to ff£c ............... 89 2.5.2 Using the Linear Theory of Regularity ............. 96 2.5.3 Full Regularity for a General Quasilinear Scalar Equation........................................ 98 3. Nonlinear Elliptic Systems Arising from Stochastic Games 113 3.1 Stochastic Games Background ...........................113 3.1.1 Statement of the Problem and Results..............113 3.1.2 Bellman Equations...............................115 3.1.3 Verification Property .............................116 3.2 Introduction to the Analytic Part.........................118 3.3 Estimates in Sobolev spaces and in Cs....................120 3.3.1 Assumptions and Statement of Results..............120 3.3.2 Preliminaries ....................................122 3.3.3 Proof of Theorem 3.7 ............................125 3.4 Estimates in L°° .......................................127 3.4.1 Assumptions ....................................127 3.4.2 Statement of Results .............................128 3.5 Existence of Solutions...................................129 3.5.1 Setting of the Problem and Assumptions............129 3.5.2 Proof of Existence................................130 3.5.3 Existence of a Weak Solution......................132 3.6 Hamiltonians Arising from Games .......................133 3.6.1 Notation........................................133 3.6.2 Verification of the Assumptions for Holder Regularity 135 3.6.3 Verification of the Assumptions for the L°° Bound.... 136 3.7 The Case of Two Players with Different Coupling Terms in the Payoffs............................................143 3.7.1 Description of the Model and Statement of Results ... 144 3.7.2 L°° Bounds .....................................145 3.7.3 Hi Bound.......................................150 4. Nonlinear Elliptic Systems Arising from Ergodic Control . 153 4.1 Introduction...........................................153 4.2 Assumptions and Statement of Results....................154 4.2.1 Assumptions on the Hamiltonians..................154 4.2.2 Statement of Results .............................156 4.3 Proof of Theorem 4.4...................................156 4.3.1 First Estimates ..................................156 4.3.2 Estimates on v% - u t .............................158 4.3.3 End of Proof of Theorem 4.4.......................161 4.4 Verification of the Assumptions..........................162 4.4.1 Notation........................................162 Contents ix 4.4.2 The Scalar Case..................................163 4.4.3 The General Case................................167 4.5 A Variant of Theorem 4.4...............................169 4.5.1 Statement of Results..............................169 4.5.2 Proof of Theorem 4.13............................170 4.6 Ergodic Problems in J? ...............................175 4.6.1 Presentation of the Problem.......................175 4.6.2 Existence Theorem for an Approximate Solution.....176 4.6.3 Proof of Theorem 4.17............................189 4.6.4 Growth at Infinity................................191 4.6.5 Uniqueness......................................192 5. Harmonic Mappings......................................197 5.1 Introduction........................................... 197 5.2 Extremals............................................. 198 5.3 Regularity............................................. 200 5.4 Hardy Spaces.......................................... 201 5.4.1 Basic Properties..................................201 5.4.2 Main Regularity Result in the Hardy Space..........204 5.5 Proof of Theorem 5.13..................................208 5.5.1 Continuity when n = 2............................208 5.5.2 Proof of (5.35) and (5.36) .........................216 5.5.3 Proof of (5.37) ..................................218 5.5.4 Atomic decomposition............................221 6. Nonlinear Elliptic Systems Arising from the Theory of Semiconductors.......................229 6.1 Physical Background....................................229 6.2 Stationary Case Without Impact Ionization................230 6.2.1 Mathematical Setting.............................230 6.2.2 Proof of Theorem 6.1 ............................233 6.2.3 A Uniqueness Result .............................240 6.2.4 Local Regularity.................................245 6.3 Stationary Case with Impact Ionization...................246 6.3.1 Setting of the Model..............................246 6.3.2 Proof of Theorem 6.5.............................248 6.4 Impact Ionization Without Recombination................257 6.4.1 Statement of the Problem.........................257 6.4.2 Proof of Theorem 6.7.............................259 7. Stationary Navier-Stokes Equations......................265 7.1 Introduction...........................................265 7.2 Regularity of Maximum-Like Solutions ..................266 7.2.1 Setting of the Problem ...........................266 x Contents 7.2.2 Some Regularity Properties of Maximum-Like Solutions ......................................267 7.2.3 The Navier-Stokes Inequality .....................273 7.2.4 Hole-Filling......................................275 7.2.5 Full Regularity ..................................279 7.3 Maximum Solutions and the NS Inequality ................280 7.3.1 Notation and Setup...............................280 7.3.2 Proof of Theorem 7.8.............................281 7.4 Existence of a Regular Solution for n 5..................283 7.4.1 Green Function Associated with Incompressible Flows 283 7.4.2 Approximation...................................288 7.4.3 Proof of Existence of a Maximum Solution for n 5 .. 289 7.5 Periodic Case: Existence of a Regular Solution for n 10-----291 7.5.1 Approximation...................................291 7.5.2 A Specific Green Function.........................292 7.5.3 Main Results ....................................295 8. Strongly Coupled Elliptic Systems........................299 8.1 Introduction...........................................299 8.2 H2^ and Meyers s Regularity Results.....................300 8.3 Holder Regularity......................................305 8.3.1 Preliminaries ....................................305 8.3.2 Representation Using Spherical Functions...........308 8.3.3 Statement of the Main Result......................311 8.3.4 Additional Remarks..............................317 8.3.5 Holder s Continuity up to the Boundary.............319 8.4 C1+a Regularity .......................................329 8.4.1 Auxiliary Inequalities.............................329 8.4.2 Main Result.....................................334 8.5 Almost Everywhere Regularity...........................338 8.5.1 Regularity on Neighborhoods of Lebesgue Points.....338 8.5.2 Proof of Theorem 8.22............................339 8.6 Regularity in the Uhlenbeck Case.........................343 8.6.1 Setting of the Problem............................343 8.6.2 Proof of Theorem 8.24............................344 8.7 Counterexamples.......................................348 8.8 Regularity for Mixed Boundary Value Systems.............352 8.8.1 Stating the Problem..............................352 8.8.2 Proof of Theorem 8.25............................354 8.8.3 Proof of Lemma 8.28 .............................359 8.8.4 Further Regularity ...............................364 8.8.5 Domain with a Corner. Mixed Boundary Conditions .. 369 8.8.6 Domain with a Corner. Dirichlet Boundary Conditions 371 Contents xi 9. Dual Approach to Nonlinear Elliptic Systems.............375 9.1 Introduction...........................................375 9.2 Preliminaries...........................................377 9.2.1 Notation........................................377 9.2.2 Properties of the Operators e(u) and Du............378 9.3 Elasticity Models.......................................379 9.3.1 Primal and Dual Problems ........................379 9.3.2 A Hybrid Model..................................380 9.4 H oc Theory for the Nonsymmetric Case...................381 9.4.1 Presentation of the Problem.......................381 9.4.2 H{oc Regularity..................................382 9.5 Hloc Theory for the Symmetric Case......................391 9.5.1 Presentation of the Problem.......................391 9.5.2 H^ Regularity..................................391 9.5.3 Reducing the Symmetric Case to the Nonsymmetric Case............................................396 9.6 Lfoc Theory for the Nonsymmetric Uhlenbeck Case.........398 9.6.1 Setting of the Problem and Statement of Results.....398 9.6.2 Proof of Theorem 9.8.............................399 9.7 W^£ Theory for the Nonsymmetric Case..................401 9.7.1 Assumptions and Results..........................401 9.7.2 Proof of Theorem 9.9.............................402 9.8 C^5 Regularity for the Nonsymmetric Case...............405 9.8.1 Setting of the Problem and Statement of Results.....405 9.8.2 Preliminary Results...............................406 9.8.3 Proof of Theorem 9.10............................410 9.9 Cs Regularity on Neighborhoods of Lebesgue Points for the Nonsymmetric Case.....................................413 9.9.1 Setting of the Problem and Statement of Results.....413 9.9.2 Proof of Theorem 9.11............................414 9.9.3 Additional Results in the Uhlenbeck Case...........418 10. Nonlinear Elliptic Systems Arising from plasticity Theory....................................421 10.1 Introduction...........................................421 10.2 Description of Models...................................422 10.2.1 Spaces U((2), E(Q)...............................422 10.2.2 Hencky model...................................423 10.2.3 Norton-Hoff Model...............................424 10.2.4 Passing to the Limit..............................426 10.3 Estimates on the Displacement...........................427 10.3.1 The fj Derive from a Potential.....................427 10.3.2 Strict Interior Condition ..........................428 10.3.3 Constituent Law for the Hencky model..............429 10.4 H{oc Regularity ........................................430 xii Contents 10.4.1 Preliminaries ....................................430 10.4.2 Uniform Estimates and Main Regularity Result......432 References....................................................435 Index.........................................................441
any_adam_object 1
author Bensoussan, Alain 1940-
Frehse, Jens 1943-
author_GND (DE-588)13295947X
(DE-588)106319930
author_facet Bensoussan, Alain 1940-
Frehse, Jens 1943-
author_role aut
aut
author_sort Bensoussan, Alain 1940-
author_variant a b ab
j f jf
building Verbundindex
bvnumber BV014330628
callnumber-first Q - Science
callnumber-label QA1 QA377
callnumber-raw QA1 QA377.A647 no. 151
callnumber-search QA1 QA377.A647 no. 151
callnumber-sort QA 11 _Q A377 A647 NO 3151
callnumber-subject QA - Mathematics
classification_rvk SK 540
SK 560
ctrlnum (OCoLC)49679386
(DE-599)BVBBV014330628
dewey-full 510S515/.35321
510
515/.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
515 - Analysis
dewey-raw 510 s 515/.353 21
510
515/.353
dewey-search 510 s 515/.353 21
510
515/.353
dewey-sort 3510 S 3515 3353 221
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02825nam a22006498cb4500</leader><controlfield tag="001">BV014330628</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20020716 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">020604s2002 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">96422500X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540677569</subfield><subfield code="9">3-540-67756-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)49679386</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV014330628</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1 QA377.A647 no. 151</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510 s 515/.353 21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">21</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">27</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35Q30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35J60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bensoussan, Alain</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13295947X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regularity results for nonlinear elliptic systems and applications</subfield><subfield code="c">Alain Bensoussan ; Jens Frehse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ; London</subfield><subfield code="b">Springer</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 440 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">151</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Elliptische systemen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Niet-lineaire vergelijkingen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles elliptiques - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles non linéaires - Solutions numériques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Elliptic -- Numerical solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear -- Numerical solutions</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches System</subfield><subfield code="0">(DE-588)4121184-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regularität</subfield><subfield code="0">(DE-588)4049074-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4310554-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptisches System</subfield><subfield code="0">(DE-588)4121184-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineares System</subfield><subfield code="0">(DE-588)4042110-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Lösung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4120678-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Regularität</subfield><subfield code="0">(DE-588)4049074-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frehse, Jens</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106319930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied mathematical sciences</subfield><subfield code="v">151</subfield><subfield code="w">(DE-604)BV000005274</subfield><subfield code="9">151</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009831226&amp;sequence=000004&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009831226</subfield></datafield></record></collection>
id DE-604.BV014330628
illustrated Not Illustrated
indexdate 2024-12-20T11:03:21Z
institution BVB
isbn 3540677569
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009831226
oclc_num 49679386
open_access_boolean
owner DE-20
DE-384
DE-355
DE-BY-UBR
DE-29T
DE-703
DE-19
DE-BY-UBM
DE-706
DE-521
DE-634
DE-83
DE-11
DE-188
owner_facet DE-20
DE-384
DE-355
DE-BY-UBR
DE-29T
DE-703
DE-19
DE-BY-UBM
DE-706
DE-521
DE-634
DE-83
DE-11
DE-188
physical XII, 440 S.
publishDate 2002
publishDateSearch 2002
publishDateSort 2002
publisher Springer
record_format marc
series Applied mathematical sciences
series2 Applied mathematical sciences
spellingShingle Bensoussan, Alain 1940-
Frehse, Jens 1943-
Regularity results for nonlinear elliptic systems and applications
Applied mathematical sciences
Elliptische systemen gtt
Niet-lineaire vergelijkingen gtt
Équations différentielles elliptiques - Solutions numériques
Équations différentielles non linéaires - Solutions numériques
Differential equations, Elliptic -- Numerical solutions
Differential equations, Nonlinear -- Numerical solutions
Elliptisches System (DE-588)4121184-4 gnd
Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd
Regularität (DE-588)4049074-9 gnd
Lösung Mathematik (DE-588)4120678-2 gnd
Nichtlineares System (DE-588)4042110-7 gnd
subject_GND (DE-588)4121184-4
(DE-588)4310554-3
(DE-588)4049074-9
(DE-588)4120678-2
(DE-588)4042110-7
title Regularity results for nonlinear elliptic systems and applications
title_auth Regularity results for nonlinear elliptic systems and applications
title_exact_search Regularity results for nonlinear elliptic systems and applications
title_full Regularity results for nonlinear elliptic systems and applications Alain Bensoussan ; Jens Frehse
title_fullStr Regularity results for nonlinear elliptic systems and applications Alain Bensoussan ; Jens Frehse
title_full_unstemmed Regularity results for nonlinear elliptic systems and applications Alain Bensoussan ; Jens Frehse
title_short Regularity results for nonlinear elliptic systems and applications
title_sort regularity results for nonlinear elliptic systems and applications
topic Elliptische systemen gtt
Niet-lineaire vergelijkingen gtt
Équations différentielles elliptiques - Solutions numériques
Équations différentielles non linéaires - Solutions numériques
Differential equations, Elliptic -- Numerical solutions
Differential equations, Nonlinear -- Numerical solutions
Elliptisches System (DE-588)4121184-4 gnd
Nichtlineare elliptische Differentialgleichung (DE-588)4310554-3 gnd
Regularität (DE-588)4049074-9 gnd
Lösung Mathematik (DE-588)4120678-2 gnd
Nichtlineares System (DE-588)4042110-7 gnd
topic_facet Elliptische systemen
Niet-lineaire vergelijkingen
Équations différentielles elliptiques - Solutions numériques
Équations différentielles non linéaires - Solutions numériques
Differential equations, Elliptic -- Numerical solutions
Differential equations, Nonlinear -- Numerical solutions
Elliptisches System
Nichtlineare elliptische Differentialgleichung
Regularität
Lösung Mathematik
Nichtlineares System
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009831226&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000005274
work_keys_str_mv AT bensoussanalain regularityresultsfornonlinearellipticsystemsandapplications
AT frehsejens regularityresultsfornonlinearellipticsystemsandapplications
  • Verfügbarkeit

‌

Per Fernleihe bestellen Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt