Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • High dimensional nonlinear dif...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Saved in:
Bibliographic Details
Main Authors: Mamontov, Yevgeny (Author), Willander, Magnus (Author)
Format: Book
Language:English
Published: Singapore [u.a.] World Scientific 2001
Series:Series on advances in mathematics for applied sciences 56
Subjects:
Ingénierie - Modèles mathématiques
Processus de diffusion
Processus stochastiques
Équations différentielles non linéaires
Ingenieurwissenschaften
Mathematisches Modell
Differential equations, Nonlinear
Diffusion processes
Engineering > Mathematical models
Stochastic processes
Stochastischer Prozess
Nichtlineare Diffusionsgleichung
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009389196&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:XVIII, 297 S.
ISBN:9810243855
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV013736619
003 DE-604
005 20031117
007 t|
008 010521s2001 xx |||| 00||| eng d
020 |a 9810243855  |9 981-02-4385-5 
035 |a (OCoLC)45283225 
035 |a (DE-599)BVBBV013736619 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-739  |a DE-703  |a DE-634  |a DE-83  |a DE-11 
050 0 |a TA342 
082 0 |a 620/.001/5118  |2 21 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
084 |a 60J80  |2 msc 
100 1 |a Mamontov, Yevgeny  |e Verfasser  |4 aut 
245 1 0 |a High dimensional nonlinear diffusion stochastic processes  |b modelling for engineering applications  |c Yevgeny Mamontov ; Magnus Willander 
246 1 3 |a High-dimensional nonlinear diffusion stochastic processes 
264 1 |a Singapore [u.a.]  |b World Scientific  |c 2001 
300 |a XVIII, 297 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Series on advances in mathematics for applied sciences  |v 56 
650 4 |a Ingénierie - Modèles mathématiques 
650 4 |a Processus de diffusion 
650 4 |a Processus stochastiques 
650 4 |a Équations différentielles non linéaires 
650 4 |a Ingenieurwissenschaften 
650 4 |a Mathematisches Modell 
650 4 |a Differential equations, Nonlinear 
650 4 |a Diffusion processes 
650 4 |a Engineering  |x Mathematical models 
650 4 |a Stochastic processes 
650 0 7 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Diffusionsgleichung  |0 (DE-588)4171749-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastischer Prozess  |0 (DE-588)4057630-9  |D s 
689 0 1 |a Nichtlineare Diffusionsgleichung  |0 (DE-588)4171749-1  |D s 
689 0 |5 DE-604 
700 1 |a Willander, Magnus  |e Verfasser  |4 aut 
830 0 |a Series on advances in mathematics for applied sciences  |v 56  |w (DE-604)BV004569239  |9 56 
856 4 2 |m HEBIS Datenaustausch Darmstadt  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009389196&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-009389196 

Record in the Search Index

_version_ 1819331168242237440
adam_text SERIES ON ADVANCES IN MATHEMATICS FOR APPLIED SCIENCES - VOL. 56 HIGH-DIMENSIONAL NONLINEAR DIFFUSION STOCHASTIC PROCESSES MODELLING FOR ENGINEERING APPLICATIONS YEVGENY MAMONTOV MAGNUS WILLANDER DEPARTMENT OF PHYSICS, MC2 GOTHENBURG UNIVERSITY AND CHALMERS UNIVERSITY OF TECHNOLOGY SWEDEN WORLD SCIENTIFIC SINGAPORE * NEW JERSEY * LONDON * HONG KONG CONTENTS PREFACE VII CHAPTER 1 INTRODUCTORY CHAPTER 1 1.1 PREREQUISITES FOR READING 1 1.2 RANDOM VARIABLE. STOCHASTIC PROCESS. RANDOM FIELD. HIGH-DIMENSIONAL PROCESS. ONE-POINT PROCESS 3 1.3 TWO-POINT PROCESS. EXPECTATION. MARKOV PROCESS. EXAMPLE OF NON-MARKOV PROCESS ASSOCIATED WITH MULTIDIMENSIONAL MARKOV PROCESS 10 1.4 PRECEDING, SUBSEQUENT AND TRANSITION PROBABILITY DENSITIES. THE CHAPMAN*KOLMOGOROV EQUATION. INITIAL CONDITION FOR MARKOV PROCESS 16 1.4.1 THE CHAPMAN-KOLMOGOROV EQUATION 19 1.4.2 INITIAL CONDITION FOR MARKOV PROCESS 20 1.5 HOMOGENEOUS MARKOV PROCESS. EXAMPLE OF MARKOV PROCESS: THE WIENER PROCESS 23 1.6 EXPECTATION, VARIANCE AND STANDARD DEVIATIONS OF MARKOV PROCESS 26 1.7 INVARIANT AND STATIONARY MARKOV PROCESSES. COVARIANCE. SPECTRAL DENSITIES 30 1.8 DIFFUSION PROCESS 37 XIV CONTENTS 1.9 EXAMPLE OF DIFFUSION PROCESSES: SOLUTIONS OF ITO S STOCHASTIC ORDINARY DIFFERENTIAL EQUATION 40 1.10 THE KOLMOGOROV BACKWARD EQUATION 46 1.11 FIGURES OF MERIT. DIFFUSION MODELLING OF HIGH-DIMENSIONAL SYSTEMS 48 1.12 COMMON ANALYTICAL TECHNIQUES TO DETERMINE PROBABILITY DENSITIES OF DIFFUSION PROCESSES. THE KOLMOGOROV FORWARD EQUATION 51 1.12.1 PROBABILITY DENSITY 51 1.12.2 INVARIANT PROBABILITY DENSITY 54 1.12.3 STATIONARY PROBABILITY DENSITY 57 1.13 THE PURPOSE AND CONTENT OF THIS BOOK 60 CHAPTER 2 DIFFUSION PROCESSES 63 2.1 INTRODUCTION 63 2.2 TIME-DERIVATIVES OF EXPECTATION AND VARIANCE 64 2.3 ORDINARY DIFFERENTIAL EQUATION SYSTEMS FOR EXPECTATION . . 66 2.3.1 THE FIRST-ORDER SYSTEM 66 2.3.2 THE SECOND-ORDER SYSTEM 68 2.3.3 SYSTEMS OF THE HIGHER ORDERS 70 2.4 MODELS FOR NOISE-INDUCED PHENOMENA IN EXPECTATION 71 2.4.1 THE CASE OF STOCHASTIC RESONANCE 71 2.4.2 PRACTICALLY EFFICIENT IMPLEMENTATION OF THE SECOND-ORDER SYSTEM 73 2.5 ORDINARY DIFFERENTIAL EQUATION SYSTEM FOR VARIANCE 76 2.5.1 DAMPING MATRIX 76 2.5.2 THE UNCORRELATED-MATRIXES APPROXIMATION 77 _.. 2.5.3 NONLINEARITY OF THE DRIFT FUNCTION 80 2.5.4 FUNDAMENTAL LIMITATION OF THE STATE-SPACE- INDEPENDENT APPROXIMATIONS FOR THE DIFFUSION AND DAMPING MATRIXES 81 2.6 THE STEADY-STATE APPROXIMATION FOR THE PROBABILITY DENSITY 82 CHAPTER 3 INVARIANT DIFFUSION PROCESSES 85 3.1 INTRODUCTION 85 3.2 PRELIMINARY REMARKS 85 3.3 EXPECTATION. THE FINITE-EQUATION METHOD 86 CONTENTS XV 3.4 EXPLICIT EXPRESSION FOR VARIANCE 88 3.5 THE SIMPLIFIED DETAILED-BALANCE APPROXIMATION FOR INVARIANT PROBABILITY DENSITY 90 3.5.1 PARTIAL DIFFERENTIAL EQUATION FOR LOGARITHM OF THE DENSITY 90 3.5.2 TRUNCATED EQUATION FOR THE LOGARITHM AND THE DETAILED-BALANCE EQUATION 91 3.5.3 CASE OF THE DETAILED BALANCE 93 3.5.4 THE DETAILED-BALANCE APPROXIMATION 95 3.5.5 THE SIMPLIFIED DETAILED-BALANCE APPROXIMATION. THEOREM ON THE APPROXIMATING DENSITY 96 3.6 ANALYTICAL-NUMERICAL APPROACH TO NON-INVARIANT AND INVARIANT DIFFUSION PROCESSES 99 3.6.1 CHOICE OF THE BOUNDED DOMAIN OF THE INTEGRATION .. 100 3.6.2 EVALUATION OF THE MULTIFOLD INTEGRALS. THE MONTE CARLO TECHNIQUE 102 3.6.3 SUMMARY OF THE APPROACH 104 3.7 DISCUSSION 105 CHAPTER 4 STATIONARY DIFFUSION PROCESSES 107 4.1 INTRODUCTION .*- 107 4.2 PREVIOUS RESULTS RELATED TO COVARIANCE AND SPECTRAL-DENSITY MATRIXES 108 4.3 TIME-SEPARATION DERIVATIVE OF COVARIANCE IN THE LIMIT CASE OF ZERO TIME SEPARATION 109 4.4 FLICKER EFFECT ILL 4.5 TIME-SEPARATION DERIVATIVE OF COVARIANCE IN THE GENERAL CASE 112 4.6 CASE OF THE UNCORRELATED MATRIXES 114 4.7 REPRESENTATIONS FOR SPECTRAL DENSITY IN THE UNCORRELATED-MATRIXES CASE 117 4.8 EXAMPLE: COMPARISON OF THE DAMPINGS FOR A PARTICLE NEAR THE MINIMUM OF ITS POTENTIAL ENERGY 118 4.9 THE DETERMINISTIC-TRANSITION APPROXIMATION 123 4.10 EXAMPLE: NON-EXPONENTIAL COVARIANCE OF VELOCITY OF A PARTICLE IN A FLUID 126 4.10.1 COVARIANCE IN THE GENERAL CASE 126 XVI CONTENTS 4.10.2 COVARIANCE AND THE QUATITIES RELATED TO IT IN A SIMPLE FLUID 128 4.10.3 CASE OF THE HARD-SPHERE FLUID 130 4.10.4 SUMMARY OF THE PROCEDURE IN THE GENERAL CASE .. 133 4.11 ANALYTICAL-NUMERICAL APPROACH TO STATIONARY PROCESS .... 134 4.11.1 PRACTICAL ISSUES 134 4.11.2 SUMMARY OF THE APPROACH 136 4.12 DISCUSSION 137 CHAPTER 5 ITO S STOCHASTIC PARTIAL DIFFERENTIAL 141 EQUATIONS AS NON-MARKOV MODELS LEADING TO HIGH-DIMENSIONAL DIFFUSION PROCESSES 5.1 INTRODUCTION 141 5.2 VARIOUS TYPES OF ITO S STOCHASTIC DIFFERENTIAL EQUATIONS . . . 142 5.3 METHOD TO REDUCE ISPIDE TO SYSTEM OF ISODES 144 5.3.1 PROJECTION APPROACH 148 5.3.2 STOCHASTIC COLLOCATION METHOD 151 5.3.3 STOCHASTIC-ADAPTIVE-INTERPOLATION METHOD 153 5.4 RELATED COMPUTATIONAL ISSUES 159 5.5 DISCUSSION 160 CHAPTER 6 ITO S STOCHASTIC PARTIAL DIFFERENTIAL 163 EQUATIONS FOR ELECTRON FLUIDS IN SEMICONDUCTORS 6.1 INTRODUCTION 163 6.2 MICROSCOPIC PHENOMENA IN MACROSCOPIC MODELS OF MULTIPARTICLE SYSTEMS 165 6.2.1 MICROSCOPIC RANDOM WALKS IN DETERMINISTIC MACROSCOPIC MODELS OF MULTIPARTICLE SYSTEMS 165 6.2.2 MACROSCALE, MESOSCALE AND MICROSCALE DOMAINS IN TERMS OF THE WAVE-DIFFUSION EQUATION 171 6.2.3 STOCHASTIC GENERALIZATION OF THE DETERMINISTIC MACROSCOPIC MODELS OF MULTIPARTICLE SYSTEMS 176 6.3 THE ISPDE SYSTEM FOR ELECTRON FLUID IN N-TYPE SEMICONDUCTOR 177 6.3.1 DETERMINISTIC MODEL FOR ELECTRON FLUID IN SEMICONDUCTOR 177 CONTENTS XVII 6.3.2 MESOSCOPIC WAVE-DIFFUSION EQUATIONS IN THE DETERMINISTIC FLUID-DYNAMIC MODEL 180 6.3.3 STOCHASTIC GENERALIZATION OF THE DETERMINISTIC FLUID-DYNAMIC MODEL. THE SEMICONDUCTOR-FLUID ISPDE SYSTEM 187 6.4 SEMICONDUCTOR NOISES AND THE SF-ISPDE SYSTEM: DISCUSSION AND FUTURE DEVELOPMENT 192 6.4.1 THE SF-ISPDE SYSTEM IN CONNECTION WITH SEMICONDUCTOR NOISES 192 6.4.2 SOME DIRECTIONS FOR FUTURE DEVELOPMENT 195 CHAPTER 7 DISTINGUISHING FEATURES 197 OF ENGINEERING APPLICATIONS 7.1 HIGH-DIMENSIONAL DIFFUSION PROCESSES 197 7.2 EFFICIENT MULTIPLE ANALYSIS 198 7.3 REASONABLE AMOUNT OF THE MAIN COMPUTER MEMORY 198 7.4 REAL-TIME SIGNAL TRANSFORMATION BY DIFFUSION PROCESS 199 CHAPTER 8 ANALYTICAL-NUMERICAL APPROACH 201 TO ENGINEERING PROBLEMS C AND COMMON ANALYTICAL TECHNIQUES 8.1 ANALYTICAL-NUMERICAL APPROACH TO ENGINEERING PROBLEMS 201 8.2 SEVERE PRACTICAL LIMITATIONS OF COMMON ANALYTICAL TECHNIQUES IN THE HIGH-DIMENSIONAL CASE. POSSIBLE ALTERNATIVES 203 APPENDIX A EXAMPLE OF MARKOV PROCESSES: 205 SOLUTIONS OF THE CAUCHY PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATION SYSTEM APPENDIX B SIGNAL-TO-NOISE RATIO 209 APPENDIX C EXAMPLE OF APPLICATION OF COROLLARY 1.2: 213 NONLINEAR FRICTION AND UNBOUNDED STATIONARY PROBABILITY DENSITY OF THE PARTICLE VELOCITY IN UNIFORM FLUID C.I DESCRIPTION OF THE MODEL 213 XVIII CONTENTS C.2 ENERGY-INDEPENDENT MOMENTUM-RELAXATION TIME. EQUILIBRIUM PROBABILITY DENSITY 220 C.3 ENERGY-DEPENDENT MOMENTUM-RELAXATION TIME: GENERAL CASE 222 C.4 ENERGY-DEPENDENT MOMENTUM-RELAXATION TIME: CASE OF SIMPLE FLUID 227 APPENDIX D PROOFS OF THE THEOREMS IN CHAPTER 2 231 AND OTHER DETAILS D.I PROOF OF THEOREM 2.1 231 D.2 PROOF OF THEOREM 2.2 232 D.3 GREEN S FORMULA FOR THE DIFFERENTIAL OPERATOR OF KOLMOGOROV S BACKWARD EQUATION 235 D.4 PROOF OF THEOREM 2.3 237 D.5 QUASI-NEUTRAL EQUILIBRIUM POINT 239 D.6 PROOF OF THEOREM 2.4 241 APPENDIX E PROOFS OF THE THEOREMS IN CHAPTER 4 243 E.I PROOF OF LEMMA 4.1 243 E.2 PROOF OF THEOREM 4.2 243 E.3 PROOF OF THEOREM 4.3 244 E.4 PROOF OF THEOREM 4.4 245 APPENDIX F HIDDEN RANDOMNESS IN NONRANDOM 247 EQUATION FOR THE PARTICLE CONCENTRATION OF UNIFORM FLUID AND CHEMICAL-REACTION /GENERATION-RECOMBINATION NOISE APPENDIX G EXAMPLE: EIGENVALUES AND EIGENFUNCTIONS 255 OF THE LINEAR DIFFERENTIAL OPERATOR ASSOCIATED WITH A BOUNDED DOMAIN IN THREE-DIMENSIONAL SPACE APPENDIX H RESOURCES FOR ENGINEERING PARALLEL 261 COMPUTING UNDER WINDOWS 95 BIBLIOGRAPHY 265 INDEX ^ 281
any_adam_object 1
author Mamontov, Yevgeny
Willander, Magnus
author_facet Mamontov, Yevgeny
Willander, Magnus
author_role aut
aut
author_sort Mamontov, Yevgeny
author_variant y m ym
m w mw
building Verbundindex
bvnumber BV013736619
callnumber-first T - Technology
callnumber-label TA342
callnumber-raw TA342
callnumber-search TA342
callnumber-sort TA 3342
callnumber-subject TA - General and Civil Engineering
classification_rvk SK 820
ctrlnum (OCoLC)45283225
(DE-599)BVBBV013736619
dewey-full 620/.001/5118
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 620 - Engineering and allied operations
dewey-raw 620/.001/5118
dewey-search 620/.001/5118
dewey-sort 3620 11 45118
dewey-tens 620 - Engineering and allied operations
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02256nam a2200541 cb4500</leader><controlfield tag="001">BV013736619</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20031117 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">010521s2001 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810243855</subfield><subfield code="9">981-02-4385-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)45283225</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013736619</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA342</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620/.001/5118</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60J80</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mamontov, Yevgeny</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High dimensional nonlinear diffusion stochastic processes</subfield><subfield code="b">modelling for engineering applications</subfield><subfield code="c">Yevgeny Mamontov ; Magnus Willander</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">High-dimensional nonlinear diffusion stochastic processes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 297 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on advances in mathematics for applied sciences</subfield><subfield code="v">56</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingénierie - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus de diffusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processus stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles non linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Nonlinear</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffusion processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Diffusionsgleichung</subfield><subfield code="0">(DE-588)4171749-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Willander, Magnus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on advances in mathematics for applied sciences</subfield><subfield code="v">56</subfield><subfield code="w">(DE-604)BV004569239</subfield><subfield code="9">56</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=009389196&amp;sequence=000001&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009389196</subfield></datafield></record></collection>
id DE-604.BV013736619
illustrated Not Illustrated
indexdate 2024-12-20T10:52:40Z
institution BVB
isbn 9810243855
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-009389196
oclc_num 45283225
open_access_boolean
owner DE-739
DE-703
DE-634
DE-83
DE-11
owner_facet DE-739
DE-703
DE-634
DE-83
DE-11
physical XVIII, 297 S.
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher World Scientific
record_format marc
series Series on advances in mathematics for applied sciences
series2 Series on advances in mathematics for applied sciences
spellingShingle Mamontov, Yevgeny
Willander, Magnus
High dimensional nonlinear diffusion stochastic processes modelling for engineering applications
Series on advances in mathematics for applied sciences
Ingénierie - Modèles mathématiques
Processus de diffusion
Processus stochastiques
Équations différentielles non linéaires
Ingenieurwissenschaften
Mathematisches Modell
Differential equations, Nonlinear
Diffusion processes
Engineering Mathematical models
Stochastic processes
Stochastischer Prozess (DE-588)4057630-9 gnd
Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd
subject_GND (DE-588)4057630-9
(DE-588)4171749-1
title High dimensional nonlinear diffusion stochastic processes modelling for engineering applications
title_alt High-dimensional nonlinear diffusion stochastic processes
title_auth High dimensional nonlinear diffusion stochastic processes modelling for engineering applications
title_exact_search High dimensional nonlinear diffusion stochastic processes modelling for engineering applications
title_full High dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov ; Magnus Willander
title_fullStr High dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov ; Magnus Willander
title_full_unstemmed High dimensional nonlinear diffusion stochastic processes modelling for engineering applications Yevgeny Mamontov ; Magnus Willander
title_short High dimensional nonlinear diffusion stochastic processes
title_sort high dimensional nonlinear diffusion stochastic processes modelling for engineering applications
title_sub modelling for engineering applications
topic Ingénierie - Modèles mathématiques
Processus de diffusion
Processus stochastiques
Équations différentielles non linéaires
Ingenieurwissenschaften
Mathematisches Modell
Differential equations, Nonlinear
Diffusion processes
Engineering Mathematical models
Stochastic processes
Stochastischer Prozess (DE-588)4057630-9 gnd
Nichtlineare Diffusionsgleichung (DE-588)4171749-1 gnd
topic_facet Ingénierie - Modèles mathématiques
Processus de diffusion
Processus stochastiques
Équations différentielles non linéaires
Ingenieurwissenschaften
Mathematisches Modell
Differential equations, Nonlinear
Diffusion processes
Engineering Mathematical models
Stochastic processes
Stochastischer Prozess
Nichtlineare Diffusionsgleichung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009389196&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV004569239
work_keys_str_mv AT mamontovyevgeny highdimensionalnonlineardiffusionstochasticprocessesmodellingforengineeringapplications
AT willandermagnus highdimensionalnonlineardiffusionstochasticprocessesmodellingforengineeringapplications
AT mamontovyevgeny highdimensionalnonlineardiffusionstochasticprocesses
AT willandermagnus highdimensionalnonlineardiffusionstochasticprocesses
  • Availability

‌

Order via interlibrary loan
Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline