Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Mastering data mining
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Berry, Michael J. A. (VerfasserIn), Linoff, Gordon (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: New York [u.a.] Wiley 2000
Schriftenreihe:Wiley computer publishing
Schlagwörter:
Data Mining
Data mining
Entreprises - Réseaux d'ordinateurs - Gestion
Marketing - Informatique
Relatiemarketing
Datenverarbeitung
Unternehmen
Business enterprises > Computer networks > Management
Marketing > Data processing
Kundenmanagement
Kundenbetreuung
Beziehungsmanagement
Kundenanalyse
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008887234&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:XVIII, 494 S. graph. Darst.
ISBN:0471331236
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV013044597
003 DE-604
005 20180530
007 t|
008 000314s2000 xxud||| |||| 00||| eng d
020 |a 0471331236  |9 0-471-33123-6 
035 |a (OCoLC)247195138 
035 |a (DE-599)BVBBV013044597 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
044 |a xxu  |c US 
049 |a DE-945  |a DE-703  |a DE-898  |a DE-739  |a DE-384  |a DE-859  |a DE-473  |a DE-Aug4  |a DE-N2  |a DE-634  |a DE-11  |a DE-188 
050 0 |a HF5415.125 
050 0 |a QA76.9.D343 
082 0 |a 658.8/02  |2 21 
084 |a QP 345  |0 (DE-625)141866:  |2 rvk 
084 |a QP 620  |0 (DE-625)141911:  |2 rvk 
084 |a QP 650  |0 (DE-625)141922:  |2 rvk 
084 |a ST 530  |0 (DE-625)143679:  |2 rvk 
100 1 |a Berry, Michael J. A.  |e Verfasser  |4 aut 
245 1 0 |a Mastering data mining  |b the art and science of customer relationship management  |c Michael J. A. Berry ; Gordon Linoff 
264 1 |a New York [u.a.]  |b Wiley  |c 2000 
300 |a XVIII, 494 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Wiley computer publishing 
650 4 |a Data Mining 
650 7 |a Data mining  |2 gtt 
650 4 |a Entreprises - Réseaux d'ordinateurs - Gestion 
650 4 |a Marketing - Informatique 
650 7 |a Relatiemarketing  |2 gtt 
650 4 |a Datenverarbeitung 
650 4 |a Unternehmen 
650 4 |a Business enterprises  |x Computer networks  |x Management 
650 4 |a Data mining 
650 4 |a Marketing  |x Data processing 
650 0 7 |a Kundenmanagement  |0 (DE-588)4236865-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Kundenbetreuung  |0 (DE-588)4297543-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Beziehungsmanagement  |0 (DE-588)4326109-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Kundenanalyse  |0 (DE-588)4304338-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Data Mining  |0 (DE-588)4428654-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 0 1 |a Kundenbetreuung  |0 (DE-588)4297543-8  |D s 
689 0 |5 DE-604 
689 1 0 |a Kundenmanagement  |0 (DE-588)4236865-0  |D s 
689 1 1 |a Beziehungsmanagement  |0 (DE-588)4326109-7  |D s 
689 1 2 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 1 |5 DE-188 
689 2 0 |a Kundenanalyse  |0 (DE-588)4304338-0  |D s 
689 2 1 |a Data Mining  |0 (DE-588)4428654-5  |D s 
689 2 |5 DE-188 
700 1 |a Linoff, Gordon  |e Verfasser  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008887234&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008887234 

Datensatz im Suchindex

DE-BY-OTHR_call_number F 03/QP 345 B534
DE-BY-OTHR_katkey 2440260
DE-BY-OTHR_location 02
DE-BY-OTHR_media_number 067001621966
_version_ 1831258018495332352
adam_text Acknowledgments xv Introduction xvii Part One Setting the Focus i_ Chapter 1 Data Mining in Context 5 What Is Data Mining? 7 What Can Data Mining Do? 8 Classification 8 Estimation 9 Prediction 10 Affinity Grouping or Association Rules 10 Clustering 10 Description and Visualization 11 The Business Context for Data Mining 11 Data Mining as a Research Tool 12 Data Mining for Process Improvement 13 Data Mining for Marketing 13 Data Mining for Customer Relationship Management 14 The Technical Context for Data Mining 14 Data Mining and Machine Learning 15 Data Mining and Statistics 15 Data Mining and Decision Support 16 Data Mining and Computer Technology 19 The Societal Context for Data Mining 19 Chapter 2 Why Master the Art? 21 Four Approaches to Data Mining 23 Purchasing Scores 24 Purchasing Software 24 Hiring Outside Experts 32 Developing In House Expertise 35 Lessons Learned 36 Chapter 3 Data Mining Methodology: The Virtuous Cycle Revisited 39 Two Styles of Data Mining 40 Directed Data Mining 40 Undirected Data Mining 42 The Virtuous Cycle of Data Mining 43 Identifying the Right Business Problem 44 Is the Data Mining Effort Necessary? 45 Is There a Particular Segment or Subgroup That Is Most Interesting? 46 What Are the Relevant Business Rules? 46 What about the Data? 47 Verifying the Opinion of Domain Experts 47 Transforming Data into Actionable Results 48 Identify and Obtain Data 49 Validate, Explore, and Clean the Data 50 Transpose the Data to the Right Granularity 51 Add Derived Variables 52 Prepare the Model Set 53 Choose the Modeling Technique and Train the Model 54 Check Performance of the Models 54 Acting on the Results 57 Measuring the Model s Effectiveness 58 What Makes Predictive Modeling Successful? 59 Time Frames of Predictive Modeling 59 Modeling Shelf Life 60 Assumption 1: The Past Is a Good Predictor of the Future 61 Assumption 2: The Data Is Available 62 Assumption 3: The Data Contains What We Want to Predict 63 Lessons Learned 64 Chapter 4 Customers and Their Lifecycles 65 Who Is the Customer? 66 Consumers 66 Business Customers 67 Customer Segments 70 The Customer Lifecycle 72 Stages of the Lifecycle 73 Major Lifecycle Events 75 Data Appears at Different Times in the Lifecycle 78 The Customer s Lifecycle 79 Targeting the Right Customers at the Right Time 80 Budget Optimization 80 Campaign Optimization 82 Customer Optimization 86 Lessons Learned 90 Part Two The Three Pillars of Data Mining 91_ Chapter 5 Data Mining Techniques and Algorithms 99 Different Goals Call for Different Techniques 100 Different Data Types Call for Different Techniques 102 Three Data Mining Techniques 102 Automatic Cluster Detection 103 How K Means Cluster Detection Works 104 Consequences of Choosing Clustering 107 Decision Trees 111 How Decision Trees Work 112 How Decision Trees Are Built 113 Consequences of Choosing Decision Trees 119 Neural Networks 121 Training Neural Networks 125 Consequences of Choosing Neural Networks 127 Lessons Learned 129 Chapter 6 Data, Data Everywhere... 131 What Should Data Look Like? 132 The Rows 132 The Columns 134 Roles of Columns in Data Mining 138 Data for Data Mining 140 What Does Data Really Look Like? 141 Where Data Comes From 141 The Right Level of Granularity 150 Different Ways to Measure Data Values 153 How Much Data Is Enough? 157 Derived Variables 158 Issues in Working with Derived Variables 159 Handling Outliers 160 Combinations of Columns 162 Summarizations 163 Extracting Features from Single Columns 164 Time Series 167 Case Study: Defining Customer Behavior 169 Dirty Data 177 Missing Data 177 Fuzzy Definitions 179 Incorrect Values 180 Lessons Learned 181 Chapter 7 Building Effective Predictive Models 183 Building Good Predictive Models 184 A Process for Building Predictive Models 184 Lift as a Measure of Performance 186 Model Stability 191 The Challenge of Model Stability 192 Working with the Model Set 193 Divide and Conquer: Training, Test, and Evaluation Sets 193 How the Size of the Model Set Affects Results 194 How the Density of the Model Set Affects Results 195 Sampling 196 What Is Oversampling? 197 Modeling Time Dependent Data 201 Model Inputs and Model Outputs 203 Latency: Taking Model Deployment into Account 206 Time and Missing Data 209 Building Models that Easily Shift in Time 210 Naming Fields 212 Using Multiple Models 213 Multiple Model Voting 213 Segmenting the Input 218 Other Reasons to Combine Models 219 Experiment! 221 The Model Set 221 Different Types of Models and Model Parameters 223 Time Frame 223 Lessons Learned 224 Chapter 8 Taking Control: Setting Up a Data Mining Environment 227 Getting Started 228 What Is a Data Mining Environment? 228 Four Case Studies 229 What Makes a Data Mining Environment Successful? 229 Case 1: Building Up a Core Competency Internally 230 Data Mining in the Insurance Industry 231 Getting Started 231 Case 2: Building a New Line of Business 235 Going Online 235 The Environment 236 The Prospect Data Warehouse 236 The Next Step 237 Case 3: Building Data Mining Skills on Data Warehouse Efforts 240 A Special Kind of Data Warehouse 240 The Plan for Data Mining 240 Data Mining in IT 241 Case 4: Data Mining Using Tessera RME 242 Requirements for an Advanced Data Mining Environment 242 What Is RME? 243 How RME Works 244 How RME Helps Prepare Data 246 How RME Supports Sampling 247 How RME Helps in Model Development 248 How RME Helps in Scoring and Managing Models 249 Lessons Learned 251 Part Three Case Studies 253 Chapter 9 Who Needs Bag Balm and Pants Stretchers 261 The Vermont Country Store 262 How Vermont Country Store Got Where It Is Today 263 Predictive Modeling at Vermont Country Store 265 The Business Problem 265 The Data 267 The Technical Approach 270 Choice of Software Package 270 The Baseline—RFM and Segmentation 271 The Challengers—Neural Networks, Decision Trees, and Regression 273 Determining What Would Have Happened 276 Calculating the Return on Investment 276 The Future 276 Expected Benefits 277 Lessons Learned 277 Chapter 10 Who Gets What? Building a Best Next Offer Model for an Online Bank 279 Gaining Wallet Share 279 The Business Problem 281 The Data 282 From Accounts to Customers 284 Defining the Products to Be Offered 287 Approach to the Problem 290 Comparable Scores 291 If It Walks Like a Duck,... 292 Pitfalls of This Approach 292 Building the Models 294 Building a Decision Tree Model for Brokerage 296 Building the Rest of the Models 306 Getting to a Cross Sell Model 307 In a More Perfect World 308 Lessons Learned 308 Chapter 11 Please Don t Go! Churn Modeling in Wireless Communication 311 The Wireless Telephone Industry 312 A Rapidly Maturing Industry 313 Some Differences from Other Industries 314 The Business Problem 316 Project Background 316 Specifics about This Market 317 What Is Churn? 318 Why Is Churn Modeling Useful? 319 Three Goals 320 Approach to Building the Churn Model 322 The Project Itself 325 Building a Churn Model: A Real Life Application 326 The Choice of Tool 326 Segmenting the Model Set 326 The Final Four (Models) 327 Choice of Modeling Algorithm 331 The Size and Density of the Model Set 338 The Effect of Latency (or Taking Deployment into Account) 339 Translating Models in Time 340 The Data 341 The Basic Customer Model 341 From Telephone Calls to Data 343 Historical Churn Rates 344 Data at the Customer and Account Level 345 Data at the Service Level 345 Data Billing History 346 Rejecting Some Variables 346 Derived Variables 347 Lessons about Building Churn Models 349 Finding the Most Significant Variables 349 Listening to the Business Users 349 Listening to the Data 350 Including Historical Churn Rates 351 Composing the Model Set 352 Building a Model for the Churn Management Application 354 Listening to the Data to Determine Model Parameters 354 Understanding the Algorithm and the Tool 355 Lessons Learned 355 Chapter 12 Converging on the Customer: Understanding Customer Behavior in the Telecommunications Industry 357 Dataflows 358 What Is a Dataflow? 359 Basic Operations 360 Dataflows in a Parallel Environment 361 Why Are Dataflows Efficient? 363 The Business Problem 364 Project Background 364 Important Marketing Questions 365 The Data 366 Call Detail Data 366 Customer Data 368 Auxiliary Files 372 A Voyage of Discovery 372 What Is in a Call Duration? 372 Calls by Time of Day 374 Calls by Market Segment 378 International Calling Patterns 382 When Are Customers at Home? 384 Internet Service Providers 387 Private Networks 388 Concurrent Calls 391 Lessons Learned 393 Chapter 13 Who Is Buying What? Getting to Know Supermarket Shoppers 395 An Industry in Transition 396 Supermarkets as Information Brokers 396 Shifting the Focus from Products to Customers 399 Three Case Studies 401 Analyzing Ethnic Purchasing Patterns 402 Business Background 402 The Data 402 A Triumph for Visualization 405 A Failed Approach 407 Just the Facts 407 Who Buys Yogurt at the Supermarket? 410 Business Background 411 The Data 411 From Groceries to Customers 416 Finding Clusters of Customers 419 Putting the Clusters to Work 421 Who Buys Meat at the Health Food Store? 424 Association Rules for Market Basket Analysis 424 People are More Interesting Than Groceries 429 Lessons Learned 432 Chapter 14 Waste Not Want Not: Improving Manufacturing Processes 435 Data Mining to Reduce Cost at R. R Donneley 436 The Technical Problem 436 The Business Problem 437 The Data 438 Inducing Rules for Cylinder Bands 442 Change on the Shop Floor 444 Long Term Impact 445 Reducing Paper Wastage at Time Inc. 445 The Business Problem 446 The Data 449 Approach to the Problem 452 Types of Waste 453 Addressable Waste 455 Inducing Rules for Addressable Waste 456 Data Transformation 456 Data Characterization and Profiling 459 Decision Trees 459 Association Rules 462 Putting It All Together 463 Lessons Learned 464 Chapter 15 The Societal Context: Data Mining and Privacy 465 The Privacy Prism 466 Is Data Mining a Threat? 468 The Expectation of Privacy 470 The Importance of Privacy 471 Information in the Material World . 476 Information in the Electronic World 477 Identifying the Customer 478 Putting It All Together 480 The Promise of Data Mining 483 Index 485
any_adam_object 1
author Berry, Michael J. A.
Linoff, Gordon
author_facet Berry, Michael J. A.
Linoff, Gordon
author_role aut
aut
author_sort Berry, Michael J. A.
author_variant m j a b mja mjab
g l gl
building Verbundindex
bvnumber BV013044597
callnumber-first H - Social Science
callnumber-label HF5415
callnumber-raw HF5415.125
QA76.9.D343
callnumber-search HF5415.125
QA76.9.D343
callnumber-sort HF 45415.125
callnumber-subject HF - Commerce
classification_rvk QP 345
QP 620
QP 650
ST 530
ctrlnum (OCoLC)247195138
(DE-599)BVBBV013044597
dewey-full 658.8/02
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 658 - General management
dewey-raw 658.8/02
dewey-search 658.8/02
dewey-sort 3658.8 12
dewey-tens 650 - Management and auxiliary services
discipline Informatik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02659nam a2200685 c 4500</leader><controlfield tag="001">BV013044597</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180530 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">000314s2000 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471331236</subfield><subfield code="9">0-471-33123-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247195138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013044597</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HF5415.125</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA76.9.D343</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.8/02</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 345</subfield><subfield code="0">(DE-625)141866:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 620</subfield><subfield code="0">(DE-625)141911:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 650</subfield><subfield code="0">(DE-625)141922:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berry, Michael J. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering data mining</subfield><subfield code="b">the art and science of customer relationship management</subfield><subfield code="c">Michael J. A. Berry ; Gordon Linoff</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 494 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Wiley computer publishing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Mining</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Data mining</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Entreprises - Réseaux d'ordinateurs - Gestion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relatiemarketing</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unternehmen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business enterprises</subfield><subfield code="x">Computer networks</subfield><subfield code="x">Management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kundenmanagement</subfield><subfield code="0">(DE-588)4236865-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kundenbetreuung</subfield><subfield code="0">(DE-588)4297543-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beziehungsmanagement</subfield><subfield code="0">(DE-588)4326109-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kundenanalyse</subfield><subfield code="0">(DE-588)4304338-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kundenbetreuung</subfield><subfield code="0">(DE-588)4297543-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kundenmanagement</subfield><subfield code="0">(DE-588)4236865-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Beziehungsmanagement</subfield><subfield code="0">(DE-588)4326109-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kundenanalyse</subfield><subfield code="0">(DE-588)4304338-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Linoff, Gordon</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008887234&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008887234</subfield></datafield></record></collection>
id DE-604.BV013044597
illustrated Illustrated
indexdate 2024-12-20T10:40:29Z
institution BVB
isbn 0471331236
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008887234
oclc_num 247195138
open_access_boolean
owner DE-945
DE-703
DE-898
DE-BY-UBR
DE-739
DE-384
DE-859
DE-473
DE-BY-UBG
DE-Aug4
DE-N2
DE-634
DE-11
DE-188
owner_facet DE-945
DE-703
DE-898
DE-BY-UBR
DE-739
DE-384
DE-859
DE-473
DE-BY-UBG
DE-Aug4
DE-N2
DE-634
DE-11
DE-188
physical XVIII, 494 S. graph. Darst.
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher Wiley
record_format marc
series2 Wiley computer publishing
spellingShingle Berry, Michael J. A.
Linoff, Gordon
Mastering data mining the art and science of customer relationship management
Data Mining
Data mining gtt
Entreprises - Réseaux d'ordinateurs - Gestion
Marketing - Informatique
Relatiemarketing gtt
Datenverarbeitung
Unternehmen
Business enterprises Computer networks Management
Data mining
Marketing Data processing
Kundenmanagement (DE-588)4236865-0 gnd
Kundenbetreuung (DE-588)4297543-8 gnd
Beziehungsmanagement (DE-588)4326109-7 gnd
Kundenanalyse (DE-588)4304338-0 gnd
Data Mining (DE-588)4428654-5 gnd
subject_GND (DE-588)4236865-0
(DE-588)4297543-8
(DE-588)4326109-7
(DE-588)4304338-0
(DE-588)4428654-5
title Mastering data mining the art and science of customer relationship management
title_auth Mastering data mining the art and science of customer relationship management
title_exact_search Mastering data mining the art and science of customer relationship management
title_full Mastering data mining the art and science of customer relationship management Michael J. A. Berry ; Gordon Linoff
title_fullStr Mastering data mining the art and science of customer relationship management Michael J. A. Berry ; Gordon Linoff
title_full_unstemmed Mastering data mining the art and science of customer relationship management Michael J. A. Berry ; Gordon Linoff
title_short Mastering data mining
title_sort mastering data mining the art and science of customer relationship management
title_sub the art and science of customer relationship management
topic Data Mining
Data mining gtt
Entreprises - Réseaux d'ordinateurs - Gestion
Marketing - Informatique
Relatiemarketing gtt
Datenverarbeitung
Unternehmen
Business enterprises Computer networks Management
Data mining
Marketing Data processing
Kundenmanagement (DE-588)4236865-0 gnd
Kundenbetreuung (DE-588)4297543-8 gnd
Beziehungsmanagement (DE-588)4326109-7 gnd
Kundenanalyse (DE-588)4304338-0 gnd
Data Mining (DE-588)4428654-5 gnd
topic_facet Data Mining
Data mining
Entreprises - Réseaux d'ordinateurs - Gestion
Marketing - Informatique
Relatiemarketing
Datenverarbeitung
Unternehmen
Business enterprises Computer networks Management
Marketing Data processing
Kundenmanagement
Kundenbetreuung
Beziehungsmanagement
Kundenanalyse
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008887234&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT berrymichaelja masteringdataminingtheartandscienceofcustomerrelationshipmanagement
AT linoffgordon masteringdataminingtheartandscienceofcustomerrelationshipmanagement
  • Verfügbarkeit

‌

Per Fernleihe bestellen Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt