Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Geometric models for noncommut...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Cover Image
Saved in:
Bibliographic Details
Main Authors: Silva, Ana Cannas da 1968- (Author), Weinstein, Alan 1943- (Author)
Format: Book
Language:English
Published: New York American Math. Soc. 1999
Series:Berkeley mathematics lecture notes 10
Subjects:
Nichtkommutative Algebra
Nichtkommutative Geometrie
Nichtkommutative Algebra - Nichtkommutative Differentialgeometrie
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008633076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:XIV, 184 S.
ISBN:0821809520
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV012701703
003 DE-604
005 20080917
007 t|
008 990804s1999 xx |||| 00||| eng d
020 |a 0821809520  |9 0-8218-0952-0 
035 |a (OCoLC)247717308 
035 |a (DE-599)BVBBV012701703 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-739  |a DE-188  |a DE-20 
050 0 |a QA1 
050 0 |a QA251.4 
082 0 |a 515.24  |2 21 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
084 |a 17,1  |2 ssgn 
100 1 |a Silva, Ana Cannas da  |d 1968-  |e Verfasser  |0 (DE-588)122891333  |4 aut 
245 1 0 |a Geometric models for noncommutative algebras  |c Ana Cannas da Silva ; Alan Weinstein 
264 1 |a New York  |b American Math. Soc.  |c 1999 
300 |a XIV, 184 S. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Berkeley mathematics lecture notes  |v 10 
650 4 |a Nichtkommutative Algebra 
650 4 |a Nichtkommutative Geometrie 
650 4 |a Nichtkommutative Algebra - Nichtkommutative Differentialgeometrie 
700 1 |a Weinstein, Alan  |d 1943-  |e Verfasser  |0 (DE-588)113532512  |4 aut 
830 0 |a Berkeley mathematics lecture notes  |v 10  |w (DE-604)BV011932272  |9 10 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008633076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-008633076 

Record in the Search Index

_version_ 1819342938714406912
adam_text Contents Preface ix Introduction xi I Universal Enveloping Algebras 1 1 Algebraic Constructions 1 1.1 Universal Enveloping Algebras 1 1.2 Lie Algebra Deformations 2 1.3 Symmetrization 3 1.4 The Graded Algebra ofU{g) 3 2 The Poincare Birkhoff Witt Theorem 5 2.1 Almost Commutativity of U(g) 5 2.2 Poisson Bracket on 9t W(g) 5 2.3 The Role of the Jacobi Identity 7 2.4 Actions of Lie Algebras 8 2.5 Proof of the Poincare Birkhoff Witt Theorem 9 II Poisson Geometry 11 3 Poisson Structures 11 3.1 Lie Poisson Bracket 11 3.2 Almost Poisson Manifolds 12 3.3 Poisson Manifolds 12 3.4 Structure Functions and Canonical Coordinates 13 3.5 Hamiltonian Vector Fields 14 3.6 Poisson Cohomology 15 4 Normal Forms 17 4.1 Lie s Normal Form 17 4.2 A Faithful Representation of g 17 4.3 The Splitting Theorem 19 4.4 Special Cases of the Splitting Theorem 20 4.5 Almost Symplectic Structures 20 4.6 Incarnations of the Jacobi Identity 21 5 Local Poisson Geometry 23 5.1 Symplectic Foliation 23 5.2 Transverse Structure 24 5.3 The Linearization Problem 25 5.4 The Cases of su(2) ands[(2;K) 27 III Poisson Category 29 V vi CONTENTS 6 Poisson Maps 29 6.1 Characterization of Poisson Maps 29 6.2 Complete Poisson Maps 31 6.3 Symplectic Realizations 32 6.4 Coisotropic Calculus 34 6.5 Poisson Quotients 34 6.6 Poisson Submanifolds 36 7 Hamiltonian Actions 39 7.1 Momentum Maps 39 7.2 First Obstruction for Momentum Maps 40 7.3 Second Obstruction for Momentum Maps 41 7.4 Killing the Second Obstruction 42 7.5 Obstructions Summarized 43 7.6 Flat Connections for Poisson Maps with Symplectic Target 44 IV Dual Pairs 47 8 Operator Algebras 47 8.1 Norm Topology and C* Algebras 47 8.2 Strong and Weak Topologies 48 8.3 Commutants 49 8.4 Dual Pairs 50 9 Dual Pairs in Poisson Geometry 51 9.1 Commutants in Poisson Geometry 51 9.2 Pairs of Symplectically Complete Foliations 52 9.3 Symplectic Dual Pairs 53 9.4 Morita Equivalence 54 9.5 Representation Equivalence 55 9.6 Topological Restrictions 56 10 Examples of Symplectic Realizations 59 10.1 Injective Realizations of T3 59 10.2 Submersive Realizations of T3 60 10.3 Complex Coordinates in Symplectic Geometry 62 10.4 The Harmonic Oscillator 63 10.5 A Dual Pair from Complex Geometry 65 V Generalized Functions 69 11 Group Algebras 69 11.1 Hopf Algebras 69 11.2 Commutative and Noncommutative Hopf Algebras 72 11.3 Algebras of Measures on Groups 73 11.4 Convolution of Functions 74 11.5 Distribution Group Algebras 76 CONTENTS vii 12 Densities 77 12.1 Densities 77 12.2 Intrinsic Lp Spaces 78 12.3 Generalized Sections 79 12.4 Poincare Birkhoff Witt Revisited 81 VI Groupoids 85 13 Groupoids 85 13.1 Definitions and Notation 85 13.2 Subgroupoids and Orbits 88 13.3 Examples of Groupoids 89 13.4 Groupoids with Structure 92 13.5 The Holonomy Groupoid of a Foliation 93 14 Groupoid Algebras 97 14.1 First Examples 97 14.2 Groupoid Algebras via Haar Systems 98 14.3 Intrinsic Groupoid Algebras 99 14.4 Groupoid Actions 101 14.5 Groupoid Algebra Actions 103 15 Extended Groupoid Algebras 105 15.1 Generalized Sections 105 15.2 Bisections 106 15.3 Actions of Bisections on Groupoids 107 15.4 Sections of the Normal Bundle 109 15.5 Left Invariant Vector Fields 110 VII Algebroids 113 16 Lie Algebroids 113 16.1 Definitions 113 16.2 First Examples of Lie Algebroids 114 16.3 Bundles of Lie Algebras 116 16.4 Integrability and Non Integrability 117 16.5 The Dual of a Lie Algebroid 119 16.6 Complex Lie Algebroids 120 17 Examples of Lie Algebroids 123 17.1 Atiyah Algebras 123 17.2 Connections on Transitive Lie Algebroids 124 17.3 The Lie Algebroid of a Poisson Manifold 125 17.4 Vector Fields Tangent to a Hypersurface 127 17.5 Vector Fields Tangent to the Boundary 128 viii CONTENTS 18 Differential Geometry for Lie Algebroids 131 18.1 The Exterior Differential Algebra of a Lie Algebroid 131 18.2 The Gerstenhaber Algebra of a Lie Algebroid 132 18.3 Poisson Structures on Lie Algebroids 134 18.4 Poisson Cohomology on Lie Algebroids 136 18.5 Infinitesimal Deformations of Poisson Structures 137 18.6 Obstructions to Formal Deformations 138 VIII Deformations of Algebras of Functions 141 19 Algebraic Deformation Theory 141 19.1 The Gerstenhaber Bracket 141 19.2 Hochschild Cohomology 142 19.3 Case of Functions on a Manifold 144 19.4 Deformations of Associative Products 144 19.5 Deformations of the Product of Functions 146 20 Weyl Algebras 149 20.1 The Moyal Weyl Product 149 20.2 The Moyal Weyl Product as an Operator Product 151 20.3 Affine Invariance of the Weyl Product 152 20.4 Derivations of Formal Weyl Algebras 152 20.5 Weyl Algebra Bundles 153 21 Deformation Quantization 155 21.1 Fedosov s Connection 155 21.2 Preparing the Connection 156 21.3 A Derivation and Filtration of the Weyl Algebra 158 21.4 Flattening the Connection 160 21.5 Classification of Deformation Quantizations 161 References 163 Index 175
any_adam_object 1
author Silva, Ana Cannas da 1968-
Weinstein, Alan 1943-
author_GND (DE-588)122891333
(DE-588)113532512
author_facet Silva, Ana Cannas da 1968-
Weinstein, Alan 1943-
author_role aut
aut
author_sort Silva, Ana Cannas da 1968-
author_variant a c d s acd acds
a w aw
building Verbundindex
bvnumber BV012701703
callnumber-first Q - Science
callnumber-label QA1
callnumber-raw QA1
QA251.4
callnumber-search QA1
QA251.4
callnumber-sort QA 11
callnumber-subject QA - Mathematics
classification_rvk SK 340
ctrlnum (OCoLC)247717308
(DE-599)BVBBV012701703
dewey-full 515.24
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.24
dewey-search 515.24
dewey-sort 3515.24
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01539nam a2200397 cb4500</leader><controlfield tag="001">BV012701703</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080917 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">990804s1999 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821809520</subfield><subfield code="9">0-8218-0952-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)247717308</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV012701703</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA1</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA251.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.24</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Silva, Ana Cannas da</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122891333</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric models for noncommutative algebras</subfield><subfield code="c">Ana Cannas da Silva ; Alan Weinstein</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">American Math. Soc.</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 184 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Berkeley mathematics lecture notes</subfield><subfield code="v">10</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nichtkommutative Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nichtkommutative Geometrie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nichtkommutative Algebra - Nichtkommutative Differentialgeometrie</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weinstein, Alan</subfield><subfield code="d">1943-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113532512</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Berkeley mathematics lecture notes</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV011932272</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=008633076&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-008633076</subfield></datafield></record></collection>
id DE-604.BV012701703
illustrated Not Illustrated
indexdate 2024-12-20T10:34:49Z
institution BVB
isbn 0821809520
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-008633076
oclc_num 247717308
open_access_boolean
owner DE-739
DE-188
DE-20
owner_facet DE-739
DE-188
DE-20
physical XIV, 184 S.
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher American Math. Soc.
record_format marc
series Berkeley mathematics lecture notes
series2 Berkeley mathematics lecture notes
spellingShingle Silva, Ana Cannas da 1968-
Weinstein, Alan 1943-
Geometric models for noncommutative algebras
Berkeley mathematics lecture notes
Nichtkommutative Algebra
Nichtkommutative Geometrie
Nichtkommutative Algebra - Nichtkommutative Differentialgeometrie
title Geometric models for noncommutative algebras
title_auth Geometric models for noncommutative algebras
title_exact_search Geometric models for noncommutative algebras
title_full Geometric models for noncommutative algebras Ana Cannas da Silva ; Alan Weinstein
title_fullStr Geometric models for noncommutative algebras Ana Cannas da Silva ; Alan Weinstein
title_full_unstemmed Geometric models for noncommutative algebras Ana Cannas da Silva ; Alan Weinstein
title_short Geometric models for noncommutative algebras
title_sort geometric models for noncommutative algebras
topic Nichtkommutative Algebra
Nichtkommutative Geometrie
Nichtkommutative Algebra - Nichtkommutative Differentialgeometrie
topic_facet Nichtkommutative Algebra
Nichtkommutative Geometrie
Nichtkommutative Algebra - Nichtkommutative Differentialgeometrie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=008633076&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV011932272
work_keys_str_mv AT silvaanacannasda geometricmodelsfornoncommutativealgebras
AT weinsteinalan geometricmodelsfornoncommutativealgebras
  • Availability

‌

Order via interlibrary loan Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline