An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals:
Saved in:
Main Authors: | , |
---|---|
Format: | Book |
Language: | German |
Published: |
München
1996
|
Series: | Technische Universität <München>: TUM-I
9605 |
Subjects: | |
Abstract: | Abstract: "In this paper, we present an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. We make use of the close relationship between commutative semigroups and pure difference binomial ideals. Based on the algorithm for the uniform word problem in commutative semigroups exhibited by Mayr and Meyer we first derive an exponential space algorithm for constructing the reduced Gröbner basis of a pure difference binomial ideal. In addition to some applications to finitely presented commutative semigroups, this algorithm is then extended to an exponential space algorithm for generating the reduced Gröbner basis of binomial ideals in general." |
Physical Description: | 19 S. |
Staff View
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV011109103 | ||
003 | DE-604 | ||
005 | 20040416 | ||
007 | t| | ||
008 | 961202s1996 gw t||| 00||| ger d | ||
016 | 7 | |a 948531118 |2 DE-101 | |
035 | |a (OCoLC)36404479 | ||
035 | |a (DE-599)BVBBV011109103 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
044 | |a gw |c DE | ||
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM I 9605 | ||
100 | 1 | |a Koppenhagen, Ulla |e Verfasser |4 aut | |
245 | 1 | 0 | |a An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals |c Ulla Koppenhagen ; Ernst W. Mayr |
264 | 1 | |a München |c 1996 | |
300 | |a 19 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-I |v 9605 | |
520 | 3 | |a Abstract: "In this paper, we present an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. We make use of the close relationship between commutative semigroups and pure difference binomial ideals. Based on the algorithm for the uniform word problem in commutative semigroups exhibited by Mayr and Meyer we first derive an exponential space algorithm for constructing the reduced Gröbner basis of a pure difference binomial ideal. In addition to some applications to finitely presented commutative semigroups, this algorithm is then extended to an exponential space algorithm for generating the reduced Gröbner basis of binomial ideals in general." | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Computer algorithms | |
650 | 4 | |a Gröbner bases | |
650 | 4 | |a Ideals (Algebra) | |
700 | 1 | |a Mayr, Ernst W. |d 1950- |e Verfasser |0 (DE-588)109817923 |4 aut | |
830 | 0 | |a Technische Universität <München>: TUM-I |v 9605 |w (DE-604)BV006185376 |9 9605 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007443163 |
Record in the Search Index
DE-BY-TUM_call_number | 0111 2001 B 6080-1996,5 |
---|---|
DE-BY-TUM_katkey | 1456832 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040020531933 |
_version_ | 1821933741537230848 |
any_adam_object | |
author | Koppenhagen, Ulla Mayr, Ernst W. 1950- |
author_GND | (DE-588)109817923 |
author_facet | Koppenhagen, Ulla Mayr, Ernst W. 1950- |
author_role | aut aut |
author_sort | Koppenhagen, Ulla |
author_variant | u k uk e w m ew ewm |
building | Verbundindex |
bvnumber | BV011109103 |
ctrlnum | (OCoLC)36404479 (DE-599)BVBBV011109103 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01869nam a2200373 cb4500</leader><controlfield tag="001">BV011109103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040416 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">961202s1996 gw t||| 00||| ger d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">948531118</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)36404479</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV011109103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM I 9605</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koppenhagen, Ulla</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals</subfield><subfield code="c">Ulla Koppenhagen ; Ernst W. Mayr</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">19 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9605</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "In this paper, we present an optimal, exponential space algorithm for generating the reduced Gröbner basis of binomial ideals. We make use of the close relationship between commutative semigroups and pure difference binomial ideals. Based on the algorithm for the uniform word problem in commutative semigroups exhibited by Mayr and Meyer we first derive an exponential space algorithm for constructing the reduced Gröbner basis of a pure difference binomial ideal. In addition to some applications to finitely presented commutative semigroups, this algorithm is then extended to an exponential space algorithm for generating the reduced Gröbner basis of binomial ideals in general."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gröbner bases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideals (Algebra)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mayr, Ernst W.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)109817923</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-I</subfield><subfield code="v">9605</subfield><subfield code="w">(DE-604)BV006185376</subfield><subfield code="9">9605</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007443163</subfield></datafield></record></collection> |
id | DE-604.BV011109103 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T10:06:27Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007443163 |
oclc_num | 36404479 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 19 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
record_format | marc |
series | Technische Universität <München>: TUM-I |
series2 | Technische Universität <München>: TUM-I |
spellingShingle | Koppenhagen, Ulla Mayr, Ernst W. 1950- An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals Technische Universität <München>: TUM-I Commutative algebra Computer algorithms Gröbner bases Ideals (Algebra) |
title | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals |
title_auth | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals |
title_exact_search | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals |
title_full | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals Ulla Koppenhagen ; Ernst W. Mayr |
title_fullStr | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals Ulla Koppenhagen ; Ernst W. Mayr |
title_full_unstemmed | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals Ulla Koppenhagen ; Ernst W. Mayr |
title_short | An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals |
title_sort | an optimal algorithm for constructing the reduced grobner basis of binomial ideals |
topic | Commutative algebra Computer algorithms Gröbner bases Ideals (Algebra) |
topic_facet | Commutative algebra Computer algorithms Gröbner bases Ideals (Algebra) |
volume_link | (DE-604)BV006185376 |
work_keys_str_mv | AT koppenhagenulla anoptimalalgorithmforconstructingthereducedgrobnerbasisofbinomialideals AT mayrernstw anoptimalalgorithmforconstructingthereducedgrobnerbasisofbinomialideals |
Order paper/chapter scan
Branch Library Mathematics & Informatics, Reports
Call Number: |
0111 2001 B 6080-1996,5
Floor plan |
---|---|
Copy 1 | Available for loan On Shelf |