Co-evolution of operator settings in genetic algorithms:
Gespeichert in:
Bibliographische Detailangaben
Beteiligte Personen: Tuson, Andrew (VerfasserIn), Ross, Peter (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Edinburgh 1996
Schriftenreihe:University <Edinburgh> / Department of Artificial Intelligence: DAI research paper 789
Schlagwörter:
Abstract:Abstract: "Typical genetic algorithm implementations use operator settings that are fixed throughout a given run. Varying these settings is known to improve performance -- the problem is knowing how to vary them. One approach is to encode the operator settings into each member of the GA population, and allow them to evolve. This paper describes an empirical investigation into the effect of co-evolving operator settings, for some common problems in the genetic algorithms field. The results obtained indicate that the problem representation, and the choice of operators on the encoded operator settings are important for useful adaptation."
Umfang:8 S.
Paper/Kapitel scannen lassen

Teilbibliothek Mathematik & Informatik, Berichte

Bestandsangaben von Teilbibliothek Mathematik &amp; Informatik, Berichte
Signatur: 0111 2001 B 6034-789
Lageplan
Exemplar 1 Ausleihbar Am Standort