The Seiberg-Witten equations and applications to the topology of smooth four-manifolds:
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Princeton, NJ
Princeton Univ. Press
1996
|
Series: | Mathematical notes
44 |
Subjects: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007154830&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Physical Description: | VI, 128 S. |
ISBN: | 0691025975 |
Staff View
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV010715095 | ||
003 | DE-604 | ||
005 | 19960902 | ||
007 | t| | ||
008 | 960423s1996 xx |||| 00||| engod | ||
020 | |a 0691025975 |9 0-691-02597-5 | ||
035 | |a (OCoLC)231662843 | ||
035 | |a (DE-599)BVBBV010715095 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-355 |a DE-703 |a DE-384 |a DE-29T |a DE-19 |a DE-824 |a DE-11 | ||
084 | |a SI 870 |0 (DE-625)143208: |2 rvk | ||
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 587f |2 stub | ||
084 | |a MAT 572f |2 stub | ||
100 | 1 | |a Morgan, John W. |d 1946- |e Verfasser |0 (DE-588)129352446 |4 aut | |
245 | 1 | 0 | |a The Seiberg-Witten equations and applications to the topology of smooth four-manifolds |c by John W. Morgan |
264 | 1 | |a Princeton, NJ |b Princeton Univ. Press |c 1996 | |
300 | |a VI, 128 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Mathematical notes |v 44 | |
650 | 0 | 7 | |a Dimension 4 |0 (DE-588)4338676-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Seiberg-Witten-Invariante |0 (DE-588)4430370-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 0 | 1 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 1 | 1 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 1 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 2 | 1 | |a Dimension 4 |0 (DE-588)4338676-3 |D s |
689 | 2 | 2 | |a Seiberg-Witten-Invariante |0 (DE-588)4430370-1 |D s |
689 | 2 | |5 DE-604 | |
830 | 0 | |a Mathematical notes |v 44 |w (DE-604)BV000003793 |9 44 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007154830&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-007154830 |
Record in the Search Index
DE-BY-TUM_call_number | 0102 MAT 572f 2001 A 25514 |
---|---|
DE-BY-TUM_katkey | 742243 |
DE-BY-TUM_location | 01 |
DE-BY-TUM_media_number | 040020452755 |
_version_ | 1821931127028318208 |
adam_text | THE SEIBERG-WITTEN EQUATIONS AND APPLICATIONS TO THE TOPOLOGY OF SMOOTH
FOUR-MANIFOLDS BY JOHN W. MORGAN MATHEMATICAL NOTES 44 PRINCETON
UNIVERSITY PRESS PRINCETON, NEW JERSEY 1996 CONTENTS 1 INTRODUCTION 1 2
CLIFFORD ALGEBRAS AND SPIN GROUPS 5 2.1 THE CLIFFORD ALGEBRAS 5 2.2 THE
GROUPS PIN(V) AND SPIN(V) 9 2.3 SPLITTING OF THE CLIFFORD ALGEBRA 13 2.4
THE COMPLEXIFICATION OF THE CL{V) 16 2.5 THE COMPLEX SPIN REPRESENTATION
19 2.6 THE GROUP SPIN C (V) 20 3 SPIN BUNDLES AND THE DIRAC OPERATOR 23
3.1 SPIN BUNDLES AND CLIFFORD BUNDLES 23 3.2 CONNECTIONS AND CURVATURE
28 3.3 THE DIRAC OPERATOR 40 3.4 THE CASE OF COMPLEX MANIFOLDS 48 4 THE
SEIBERG-WITTEN MODULI SPACE 55 4.1 THE EQUATIONS 55 4.2 SPACE OF
CONFIGURATIONS 57 4.3 GROUP OF CHANGES OF GAUGE 59 4.4 THE ACTION 59 4.5
THE QUOTIENT SPACE 60 4.6 THE ELLIPTIC COMPLEX 65 5 CURVATURE IDENTITIES
AND BOUNDS 69 5.1 CURVATURE IDENTITIES 70 5.2 A PRIORI BOUNDS 77 5.3 THE
COMPACTNESS OF THE MODULI SPACE 80 VI CONTENTS 6 THE SEIBERG-WITTEN
INVARIANT 87 6.1 THE STATEMENT 87 6.2 THE PARAMETRIZED MODULI SPACE 88
6.3 REDUCIBLE SOLUTIONS 91 6.4 COMPACTNESS OF THE PERTURBED MODULI SPACE
92 6.5 VARIATION OF THE METRIC AND SELF-DUAL TWO-FORM 94 6.6
ORIENTABILITY OF THE MODULI SPACE 95 6.7 THE CASE WHEN B$(X) 1 99 6.8
AN INVOLUTION IN THE THEORY 100 6.9 THE CASE WHEN B${X) = 1 104 7
INVARIANTS OF KAHLER SURFACES 109 7.1 THE EQUATIONS OVER A KAHLER
MANIFOLD 109 7.2 HOLOMORPHIC DESCRIPTION OF THE MODULI SPACE 112 7.3
EVALUATION FOR KAHLER SURFACES 118 7.4 COMPUTATION FOR KAHLER SURFACES
122 7.5 FINAL REMARKS 126 BIBLIOGRAPHY 127
|
any_adam_object | 1 |
author | Morgan, John W. 1946- |
author_GND | (DE-588)129352446 |
author_facet | Morgan, John W. 1946- |
author_role | aut |
author_sort | Morgan, John W. 1946- |
author_variant | j w m jw jwm |
building | Verbundindex |
bvnumber | BV010715095 |
classification_rvk | SI 870 SK 350 SK 370 |
classification_tum | MAT 587f MAT 572f |
ctrlnum | (OCoLC)231662843 (DE-599)BVBBV010715095 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02318nam a2200541 cb4500</leader><controlfield tag="001">BV010715095</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19960902 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">960423s1996 xx |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691025975</subfield><subfield code="9">0-691-02597-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)231662843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010715095</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 870</subfield><subfield code="0">(DE-625)143208:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 587f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 572f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morgan, John W.</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129352446</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Seiberg-Witten equations and applications to the topology of smooth four-manifolds</subfield><subfield code="c">by John W. Morgan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 128 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematical notes</subfield><subfield code="v">44</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Seiberg-Witten-Invariante</subfield><subfield code="0">(DE-588)4430370-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Dimension 4</subfield><subfield code="0">(DE-588)4338676-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Seiberg-Witten-Invariante</subfield><subfield code="0">(DE-588)4430370-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematical notes</subfield><subfield code="v">44</subfield><subfield code="w">(DE-604)BV000003793</subfield><subfield code="9">44</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007154830&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-007154830</subfield></datafield></record></collection> |
id | DE-604.BV010715095 |
illustrated | Not Illustrated |
indexdate | 2024-12-20T09:59:25Z |
institution | BVB |
isbn | 0691025975 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-007154830 |
oclc_num | 231662843 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-703 DE-384 DE-29T DE-19 DE-BY-UBM DE-824 DE-11 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-703 DE-384 DE-29T DE-19 DE-BY-UBM DE-824 DE-11 |
physical | VI, 128 S. |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Princeton Univ. Press |
record_format | marc |
series | Mathematical notes |
series2 | Mathematical notes |
spellingShingle | Morgan, John W. 1946- The Seiberg-Witten equations and applications to the topology of smooth four-manifolds Mathematical notes Dimension 4 (DE-588)4338676-3 gnd Seiberg-Witten-Invariante (DE-588)4430370-1 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Mathematische Physik (DE-588)4037952-8 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
subject_GND | (DE-588)4338676-3 (DE-588)4430370-1 (DE-588)4185712-4 (DE-588)4037952-8 (DE-588)4012269-4 |
title | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds |
title_auth | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds |
title_exact_search | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds |
title_full | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds by John W. Morgan |
title_fullStr | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds by John W. Morgan |
title_full_unstemmed | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds by John W. Morgan |
title_short | The Seiberg-Witten equations and applications to the topology of smooth four-manifolds |
title_sort | the seiberg witten equations and applications to the topology of smooth four manifolds |
topic | Dimension 4 (DE-588)4338676-3 gnd Seiberg-Witten-Invariante (DE-588)4430370-1 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Mathematische Physik (DE-588)4037952-8 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
topic_facet | Dimension 4 Seiberg-Witten-Invariante Topologische Mannigfaltigkeit Mathematische Physik Differenzierbare Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=007154830&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000003793 |
work_keys_str_mv | AT morganjohnw theseibergwittenequationsandapplicationstothetopologyofsmoothfourmanifolds |
Table of Contents
Order paper/chapter scan
Order paper/chapter scan
Branch Library Mathematics & Informatics
Call Number: |
0102 MAT 572f 2001 A 25514
Floor plan |
---|---|
Copy 1 | Available for loan On Shelf |