Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Multidimensional hypergeometri...
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Cover Image
Saved in:
Bibliographic Details
Main Author: Varčenko, Aleksandr N. 1949- (Author)
Format: Book
Language:English
Published: Singapore [u.a.] World Scientific Publ. 1995
Series:Advanced series in mathematical physics 21
Subjects:
Quantengruppe
Lie-Algebra
Darstellungstheorie
Hypergeometrische Reihe
Kac-Moody-Algebra
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006998593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Physical Description:IX, 371 S. graph. Darst.
ISBN:981021880X
Staff View

MARC

LEADER 00000nam a2200000 cb4500
001 BV010501917
003 DE-604
005 19951130
007 t|
008 951130s1995 xx d||| |||| 00||| eng d
020 |a 981021880X  |9 981-02-1880-X 
035 |a (OCoLC)246752724 
035 |a (DE-599)BVBBV010501917 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-355  |a DE-12  |a DE-29T  |a DE-11  |a DE-188 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
100 1 |a Varčenko, Aleksandr N.  |d 1949-  |e Verfasser  |0 (DE-588)115203257  |4 aut 
245 1 0 |a Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups  |c A. Varchenko 
264 1 |a Singapore [u.a.]  |b World Scientific Publ.  |c 1995 
300 |a IX, 371 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 1 |a Advanced series in mathematical physics  |v 21 
650 0 7 |a Quantengruppe  |0 (DE-588)4252437-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Lie-Algebra  |0 (DE-588)4130355-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Darstellungstheorie  |0 (DE-588)4148816-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Kac-Moody-Algebra  |0 (DE-588)4223399-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Lie-Algebra  |0 (DE-588)4130355-6  |D s 
689 0 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 0 2 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |D s 
689 0 |5 DE-604 
689 1 0 |a Quantengruppe  |0 (DE-588)4252437-4  |D s 
689 1 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 1 2 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |D s 
689 1 |5 DE-604 
689 2 0 |a Kac-Moody-Algebra  |0 (DE-588)4223399-9  |D s 
689 2 1 |a Darstellungstheorie  |0 (DE-588)4148816-7  |D s 
689 2 2 |a Hypergeometrische Reihe  |0 (DE-588)4161061-1  |D s 
689 2 |5 DE-604 
830 0 |a Advanced series in mathematical physics  |v 21  |w (DE-604)BV000900258  |9 21 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006998593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-006998593 

Record in the Search Index

DE-BY-UBR_call_number 80/SK 340 V289
DE-BY-UBR_katkey 2201724
DE-BY-UBR_location UB Lesesaal Mathematik
DE-BY-UBR_media_number 069008141927
_version_ 1835086569610936321
adam_text Contents 1. Introduction 1 1.1 Example. Three points on the line 2 1.2 Brief description of the contents 9 1.3 Acknowledgements 14 2. Construction of complexes calculating homology of the complement of a configuration 15 2.1 Configuration in a real space 15 2.2 Configuration in a complex space 18 2.3 Homology 19 2.4 Compatible orientation of cells of complexes Q, Q /Q , X 22 2.5 Local system S*(a) and distinguished sections over cells 22 2.6 Quantum bilinear form of a configuration 25 2.7 Homomorphism of the projection on the real part 29 2.8 Action of a group preserving configuration 33 2.9 Abstract complexes of a real configuration 35 3. Construction of homology complexes for discriminantal configuration 39 3.1 Discriminantal configuration 39 3.2 Facets of a discriminantal configuration 40 3.3 Centers of top dimensional facets 41 3.4 Basic polytopes 42 3.5 Centers of facets of arbitrary codimension 42 3.6 Cells of the construction of Sec. 2 are convex polytopes 43 3.7 Description of basic polytopes by inequalities 45 3.8 Admissible monomials 46 3.9 Equalities and inequalities defining cells 48 3.10 Distinguished coorientation of a discriminantal configuration 50 3.11 Weights of Cn k(zi,. ..,zn) and the reduced quantum bilinear form for n 1 53 3.12 Complexes C.(Q /Q ,S*(a)), C.{X,S*{a)) for a discriminantal configuration Cn * 54 vi Contents 3.13 Action of the permutation group £jt on a discriminantal configuration CUtk (z) 58 3.14 Complexes X.(Cn,k) and Q.(Cn,k) 61 3.15 Homology of Q.(Cn,k) 62 3.16 Action of the permutation group on X.(CU:k), Q (Cn,k) 62 4. Algebraic interpretation of chain complexes of a discriminantal configuration 67 4.1 Quantum groups 67 4.2 Contravariant form 69 4.3 Coalgebra structure on f/,n_, algebra structure on ((7,n_)* 75 4.4 Hochschild homology 79 4.5 Two sided Hochschild complexes connected with a discriminantal configuration 80 4.6 Algebraic interpretation of the abstract complexes X.(Cn k) and Q.(CUik) of a discriminantal configuration 82 4.7 Geometric interpretation of complexes C.(+Uqn _; M; 2; +A)a and C.*(+t/,n _; M; 2; fi)x defined in (4.5) 85 4.8 Symmetrization 88 4.9 Proof of Theorem (4.7.5) 91 5. Quasiisomorphism of two sided Hochschild complexes to suitable one sided Hochschild complexes 93 5.1 One sided Hochschild complexes connected with a discriminantal configuration 93 5.2 Complexes (5.1.1) and (5.1.24) as subcomplexes of complexes (4.5.5) 100 5.3 Construction of a monomorphism p : C.(+t/,n_; M; +A)a »C.(+£/,n _;M;2;+A)x 106 5.4 Theorem. The monomorphisnup : C?(+Uqti ;M;i/,) — C*(+Uqn __;M; 2;/j)j is a quasiisomorphism 115 5.5 Theorem. The monomorphism (p : C(+C/,n_;M; +A) — C.(+Uqn _;M; 2;+A)j is a quasiisomorphism 118 5.6 Filtration in C.(+I/,n _;M;+A) 119 5.7 Degree 120 5.8 Proof of Theorem 5.6.12 121 5.9 Proof of Theorem 5.6.11 123 5.10 Remark 126 Contents vii 5.11 Geometric interpretation of Theorems 5.3.43, 5.4, and 5.5 126 6. Bundle properties of a discriminantal configuration 145 6.1 Subordinated monomials 145 6.2 Leaves 145 6.3 Properties of leaves 147 6.4 Proof of Theorem 6.2.4 151 7. R matrix for the two sided Hochschild complexes 155 7.1 Bistructures on (+t/,n )®n, (+[/,n_)*®n 155 7.2 t/,n_ bimodule structure on (C/,n_)* 158 7.3 (f/,n_)* bimodule structure on C/,n_ 158 7.4 R matrix 159 7.5 Symmetrization and R matrix 165 7.6 R matrix for Verma modules 166 7.7 Connection of R matrices for two and one sided Hochschild complexes 168 8. Monodromy 171 8.1 Gauss Manin connection 171 8.2 Chain complexes over real points of the base 173 8.3 Parallel translations along special curves 176 8.4 Isotopy of the real line 178 8.5 Factorization properties of cells 180 8.6 Involution 183 8.7 Bundle property 183 8.8 Construction of Tt 185 8.9 Lemma. The deformation Tt defined on each cell separately is compatible on intersections of cells 186 8.10 Example 188 8.11 Computation of the action 7 : C.(Q /Q ,S*(A), z°) C.(Q IQ ,S*(A), z°) for the isotropy Tt constructed in (8.8) 189 8.12 Proof of Theorem 8.3.4 for Ttu 190 8.13 Geometric interpretation of the R matrix operators acting on the two sided Hochschild complexes constructed in Sec. 4 191 8.14 Geometric interpretation of the R matrix operators on the complexes C.(+[/,n_;M6; +A)V and C.*(+t/,n_; Aff;^)A, constructed in Sec. 5. 194 viii Contents 9. R matrix operator as the canonical element, quantum doubles 197 9.1 Quantum double 197 9.2 Quantum doubles £ ((£/,b_) ) and T (Uqb+) 198 9.3 The action of the quantum doubles on Verma modules and their duals 202 9.4 The quotient complex C.(+l/,n_; Ma; +A)/ker5 207 9.5 Quantum groups corresponding to Kac Moody algebras 210 10. Hypergeometric integrals 215 10.1 Orlik Solomon algebra and flags 215 10.2 Framings and bases 216 10.3 Quasiclassical contravariant form of a configuration 218 10.4 Relative complexes 220 10.5 Integrable connection on the horizontal complexes 223 10.6 Hypergeometric differential forms 228 10.7 Hypergeometric integrals 230 10.8 Resolution of singularities of a configuration of hyperplanes 233 10.9 Integration pairings and symmetric frames 236 10.10 Hypergeometric differential equations 239 11. Kac Moody Lie algebras without Serre s relations and their doubles 247 11.1 Kac Moody Lie algebras without Serre s relations 247 11.2 Complexes 250 11.3 The double 252 11.4 Homology in degree zero 261 11.5 Knizhnik Zamolodchikov differential equation 261 12. Hypergeometric integrals of a discriminantal configuration 265 12.1 Complexes of a discriminantal configuration 265 12.2 Hypergeometric pairings 271 12.3 Hypergeometric integrals and the Knizhnik Zamolodchikov connection 278 12.4 Resonances 285 12.5 Nondegeneracy of the hypergeometric pairing J{z) : Ho(C.(n_;L)A) ® H0(C.(+Uqn^L(q) 6)x) C for almost all k. Asymptotics for k + oo. 290 Contents ix 13. Resonances at infinity 295 13.1 Projective transformations of the complex line and discriminantal configurations 295 13.2 Complementary weight 296 13.3 The inversion isomorphism for one Verma module 298 13.4 An inversion isomorphism for n Verma modules 303 13.5 Generic sets 309 13.6 Transformations of flag forms 310 13.7 The kernel of the hypergeometric pairing for s(2 312 13.8 Remarks on the representation theory of the quantum double of the subalgebra C/?b_ c Uqs£2 317 14. Degenerations of discriminantal configurations 329 14.1 Composition of singular vectors 329 14.2 Asymptotics of the hypergeometric pairing 337 14.3 Rank of the hypergeometric pairing 341 14.4 Remarks on the kernel of the hypergeometric pairing 342 14.5 The Selberg formula 343 14.6 The hypergeometric pairing for g = s£2 and two modules 344 15. Remarks on homology groups of a configuration with coefficients in local systems more general than complex one dimensional 347 15.1 Complexified real configuration 347 15.2 Universal quantum group 349 15.3 Discriminantal configuration 352 15.4 Remarks on homology groups of braid groups 357 15.5 Local systems of rank greater than 1 359 References 367
any_adam_object 1
author Varčenko, Aleksandr N. 1949-
author_GND (DE-588)115203257
author_facet Varčenko, Aleksandr N. 1949-
author_role aut
author_sort Varčenko, Aleksandr N. 1949-
author_variant a n v an anv
building Verbundindex
bvnumber BV010501917
classification_rvk SK 340
ctrlnum (OCoLC)246752724
(DE-599)BVBBV010501917
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02213nam a2200505 cb4500</leader><controlfield tag="001">BV010501917</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19951130 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">951130s1995 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981021880X</subfield><subfield code="9">981-02-1880-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246752724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV010501917</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varčenko, Aleksandr N.</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115203257</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups</subfield><subfield code="c">A. Varchenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific Publ.</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 371 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced series in mathematical physics</subfield><subfield code="v">21</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantengruppe</subfield><subfield code="0">(DE-588)4252437-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kac-Moody-Algebra</subfield><subfield code="0">(DE-588)4223399-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Hypergeometrische Reihe</subfield><subfield code="0">(DE-588)4161061-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced series in mathematical physics</subfield><subfield code="v">21</subfield><subfield code="w">(DE-604)BV000900258</subfield><subfield code="9">21</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=006998593&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006998593</subfield></datafield></record></collection>
id DE-604.BV010501917
illustrated Illustrated
indexdate 2024-12-20T09:55:17Z
institution BVB
isbn 981021880X
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-006998593
oclc_num 246752724
open_access_boolean
owner DE-355
DE-BY-UBR
DE-12
DE-29T
DE-11
DE-188
owner_facet DE-355
DE-BY-UBR
DE-12
DE-29T
DE-11
DE-188
physical IX, 371 S. graph. Darst.
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher World Scientific Publ.
record_format marc
series Advanced series in mathematical physics
series2 Advanced series in mathematical physics
spellingShingle Varčenko, Aleksandr N. 1949-
Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
Advanced series in mathematical physics
Quantengruppe (DE-588)4252437-4 gnd
Lie-Algebra (DE-588)4130355-6 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
Hypergeometrische Reihe (DE-588)4161061-1 gnd
Kac-Moody-Algebra (DE-588)4223399-9 gnd
subject_GND (DE-588)4252437-4
(DE-588)4130355-6
(DE-588)4148816-7
(DE-588)4161061-1
(DE-588)4223399-9
title Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
title_auth Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
title_exact_search Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
title_full Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups A. Varchenko
title_fullStr Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups A. Varchenko
title_full_unstemmed Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups A. Varchenko
title_short Multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
title_sort multidimensional hypergeometric functions and representation theory of lie algebras and quantum groups
topic Quantengruppe (DE-588)4252437-4 gnd
Lie-Algebra (DE-588)4130355-6 gnd
Darstellungstheorie (DE-588)4148816-7 gnd
Hypergeometrische Reihe (DE-588)4161061-1 gnd
Kac-Moody-Algebra (DE-588)4223399-9 gnd
topic_facet Quantengruppe
Lie-Algebra
Darstellungstheorie
Hypergeometrische Reihe
Kac-Moody-Algebra
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006998593&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
volume_link (DE-604)BV000900258
work_keys_str_mv AT varcenkoaleksandrn multidimensionalhypergeometricfunctionsandrepresentationtheoryofliealgebrasandquantumgroups
  • Availability

‌

Order via interlibrary loan
Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline