Elements of algebra: geometry, numbers, equations
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
New York u.a.
Springer
1994
|
Series: | Undergraduate texts in mathematics
|
Subjects: | |
Links: | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006417413&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
Abstract: | This book is a concise, self-contained introduction to abstract algebra that stresses its unifying role in geometry and number theory. Classical results in these fields, such as the straightedge-and-compass constructions and their relation to Fermat primes, are used to motivate and illustrate algebraic techniques. Classical algebra itself is used to motivate the problem of solvability by radicals and its solution via Galois theory. This historical approach has at least two advantages: On the one hand it shows that abstract concepts have concrete roots, and on the other it demonstrates the power of new concepts to solve old problems. Algebra has a pedigree stretching back at least as far as Euclid, but today its connections with other parts of mathematics are often neglected or forgotten. By developing algebra out of classical number theory and geometry and reviving these connections, the author has made this book useful to beginners and experts alike. The lively style and clear exposition make it a pleasure to read and to learn from. |
Physical Description: | XI, 181 S. graph. Darst. |
ISBN: | 3540942904 0387942904 |
Staff View
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV009701210 | ||
003 | DE-604 | ||
005 | 19950721 | ||
007 | t| | ||
008 | 940704s1994 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 940698544 |2 DE-101 | |
020 | |a 3540942904 |9 3-540-94290-4 | ||
020 | |a 0387942904 |9 0-387-94290-4 | ||
035 | |a (OCoLC)844291601 | ||
035 | |a (DE-599)BVBBV009701210 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-355 |a DE-20 |a DE-29T |a DE-703 |a DE-824 |a DE-739 |a DE-91 |a DE-634 |a DE-83 |a DE-188 | ||
050 | 0 | |a QA155 | |
082 | 0 | |a 512/.02 |2 20 | |
084 | |a SK 200 |0 (DE-625)143223: |2 rvk | ||
084 | |a 11-03 |2 msc | ||
084 | |a 12-03 |2 msc | ||
084 | |a MAT 110f |2 stub | ||
084 | |a 14-03 |2 msc | ||
100 | 1 | |a Stillwell, John |d 1942- |e Verfasser |0 (DE-588)128427264 |4 aut | |
245 | 1 | 0 | |a Elements of algebra |b geometry, numbers, equations |c John Stillwell |
264 | 1 | |a New York u.a. |b Springer |c 1994 | |
300 | |a XI, 181 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
520 | 3 | |a This book is a concise, self-contained introduction to abstract algebra that stresses its unifying role in geometry and number theory. Classical results in these fields, such as the straightedge-and-compass constructions and their relation to Fermat primes, are used to motivate and illustrate algebraic techniques. Classical algebra itself is used to motivate the problem of solvability by radicals and its solution via Galois theory. This historical approach has at least two advantages: On the one hand it shows that abstract concepts have concrete roots, and on the other it demonstrates the power of new concepts to solve old problems. Algebra has a pedigree stretching back at least as far as Euclid, but today its connections with other parts of mathematics are often neglected or forgotten. By developing algebra out of classical number theory and geometry and reviving these connections, the author has made this book useful to beginners and experts alike. The lively style and clear exposition make it a pleasure to read and to learn from. | |
650 | 7 | |a Algèbre |2 ram | |
650 | 4 | |a Algebra | |
650 | 0 | 7 | |a Universelle Algebra |0 (DE-588)4061777-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Universelle Algebra |0 (DE-588)4061777-4 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 2 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006417413&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-006417413 |
Record in the Search Index
DE-BY-TUM_call_number | 0002 MAT 110f 95 A 1144 |
---|---|
DE-BY-TUM_katkey | 629498 |
DE-BY-TUM_location | 00 |
DE-BY-TUM_media_number | 040000764852 |
_version_ | 1829511593016164352 |
any_adam_object | 1 |
author | Stillwell, John 1942- |
author_GND | (DE-588)128427264 |
author_facet | Stillwell, John 1942- |
author_role | aut |
author_sort | Stillwell, John 1942- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV009701210 |
callnumber-first | Q - Science |
callnumber-label | QA155 |
callnumber-raw | QA155 |
callnumber-search | QA155 |
callnumber-sort | QA 3155 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 200 |
classification_tum | MAT 110f |
ctrlnum | (OCoLC)844291601 (DE-599)BVBBV009701210 |
dewey-full | 512/.02 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.02 |
dewey-search | 512/.02 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02993nam a2200553 c 4500</leader><controlfield tag="001">BV009701210</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">19950721 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">940704s1994 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">940698544</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540942904</subfield><subfield code="9">3-540-94290-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387942904</subfield><subfield code="9">0-387-94290-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)844291601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV009701210</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA155</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.02</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 200</subfield><subfield code="0">(DE-625)143223:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stillwell, John</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128427264</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of algebra</subfield><subfield code="b">geometry, numbers, equations</subfield><subfield code="c">John Stillwell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York u.a.</subfield><subfield code="b">Springer</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 181 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book is a concise, self-contained introduction to abstract algebra that stresses its unifying role in geometry and number theory. Classical results in these fields, such as the straightedge-and-compass constructions and their relation to Fermat primes, are used to motivate and illustrate algebraic techniques. Classical algebra itself is used to motivate the problem of solvability by radicals and its solution via Galois theory. This historical approach has at least two advantages: On the one hand it shows that abstract concepts have concrete roots, and on the other it demonstrates the power of new concepts to solve old problems. Algebra has a pedigree stretching back at least as far as Euclid, but today its connections with other parts of mathematics are often neglected or forgotten. By developing algebra out of classical number theory and geometry and reviving these connections, the author has made this book useful to beginners and experts alike. The lively style and clear exposition make it a pleasure to read and to learn from.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbre</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Universelle Algebra</subfield><subfield code="0">(DE-588)4061777-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006417413&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-006417413</subfield></datafield></record></collection> |
id | DE-604.BV009701210 |
illustrated | Illustrated |
indexdate | 2024-12-20T09:40:49Z |
institution | BVB |
isbn | 3540942904 0387942904 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-006417413 |
oclc_num | 844291601 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-20 DE-29T DE-703 DE-824 DE-739 DE-91 DE-BY-TUM DE-634 DE-83 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-20 DE-29T DE-703 DE-824 DE-739 DE-91 DE-BY-TUM DE-634 DE-83 DE-188 |
physical | XI, 181 S. graph. Darst. |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spellingShingle | Stillwell, John 1942- Elements of algebra geometry, numbers, equations Algèbre ram Algebra Universelle Algebra (DE-588)4061777-4 gnd Algebra (DE-588)4001156-2 gnd Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4061777-4 (DE-588)4001156-2 (DE-588)4020236-7 |
title | Elements of algebra geometry, numbers, equations |
title_auth | Elements of algebra geometry, numbers, equations |
title_exact_search | Elements of algebra geometry, numbers, equations |
title_full | Elements of algebra geometry, numbers, equations John Stillwell |
title_fullStr | Elements of algebra geometry, numbers, equations John Stillwell |
title_full_unstemmed | Elements of algebra geometry, numbers, equations John Stillwell |
title_short | Elements of algebra |
title_sort | elements of algebra geometry numbers equations |
title_sub | geometry, numbers, equations |
topic | Algèbre ram Algebra Universelle Algebra (DE-588)4061777-4 gnd Algebra (DE-588)4001156-2 gnd Geometrie (DE-588)4020236-7 gnd |
topic_facet | Algèbre Algebra Universelle Algebra Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=006417413&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT stillwelljohn elementsofalgebrageometrynumbersequations |
Table of Contents
Order paper/chapter scan
Order paper/chapter scan
Branch Library Main Campus
Call Number: |
0002 MAT 110f 95 A 1144
Floor plan |
---|---|
Copy 1 | Available for loan On Shelf |