Weiter zum Inhalt
UB der TUM
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporäre Merkliste: 0 temporär gemerkt (Voll)
  • Hilfe
    • Kontakt
    • Suchtipps
    • Informationen Fernleihe
  • Chat
  • Tools
    • Suchhistorie
    • Freie Fernleihe
    • Erwerbungsvorschlag
  • English
  • Konto

    Konto

    • Ausgeliehen
    • Bestellt
    • Sperren/Gebühren
    • Profil
    • Suchhistorie
  • Log out
  • Login
  • Bücher & Journals
  • Papers
Erweitert
  • Matroid decomposition
  • Zitieren
  • Als E-Mail versenden
  • Drucken
  • Datensatz exportieren
    • Exportieren nach RefWorks
    • Exportieren nach EndNoteWeb
    • Exportieren nach EndNote
    • Exportieren nach BibTeX
    • Exportieren nach RIS
  • Zur Merkliste hinzufügen
  • Temporär merken Aus der temporären Merkliste entfernen
  • Permalink
Export abgeschlossen — 
Buchumschlag
Gespeichert in:
Bibliographische Detailangaben
Beteilige Person: Truemper, Klaus (VerfasserIn)
Format: Buch
Sprache:Englisch
Veröffentlicht: Boston u.a. Academic Press 1992
Schlagwörter:
Ungarn > Strafverfahrensgesetz
Décomposition (Mathématiques)
Décomposition (mathématiques)
Matroïde
Matroïdes
Decomposition (Mathematics)
Matroids
Politische Meinungsäußerung
Zerlegung > Mathematik
Matroid
Dekomposition
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005410564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
Umfang:X, 398 S. zahlr. graph. Darst.
ISBN:0127012257
Internformat

MARC

LEADER 00000nam a2200000 c 4500
001 BV008199818
003 DE-604
005 00000000000000.0
007 t|
008 930903s1992 xx d||| |||| 00||| eng d
020 |a 0127012257  |9 0-12-701225-7 
035 |a (OCoLC)25367779 
035 |a (DE-599)BVBBV008199818 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
049 |a DE-12  |a DE-739  |a DE-703  |a DE-29T  |a DE-384  |a DE-634  |a DE-83  |a DE-188 
050 0 |a QA166.6 
082 0 |a 511/.5  |2 20 
084 |a SK 890  |0 (DE-625)143267:  |2 rvk 
084 |a 52B40  |2 msc 
084 |a 90C27  |2 msc 
084 |a 05B35  |2 msc 
100 1 |a Truemper, Klaus  |e Verfasser  |4 aut 
245 1 0 |a Matroid decomposition  |c K. Truemper 
264 1 |a Boston u.a.  |b Academic Press  |c 1992 
300 |a X, 398 S.  |b zahlr. graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
610 2 7 |a Ungarn  |t Strafverfahrensgesetz  |0 (DE-588)4138428-3  |2 gnd  |9 rswk-swf 
650 4 |a Décomposition (Mathématiques) 
650 7 |a Décomposition (mathématiques)  |2 ram 
650 4 |a Matroïde 
650 4 |a Matroïdes 
650 4 |a Decomposition (Mathematics) 
650 4 |a Matroids 
650 0 7 |a Politische Meinungsäußerung  |0 (DE-588)4175032-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Zerlegung  |g Mathematik  |0 (DE-588)4190746-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Matroid  |0 (DE-588)4128705-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Dekomposition  |0 (DE-588)4149030-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Matroid  |0 (DE-588)4128705-8  |D s 
689 0 1 |a Dekomposition  |0 (DE-588)4149030-7  |D s 
689 0 |5 DE-604 
689 1 0 |a Matroid  |0 (DE-588)4128705-8  |D s 
689 1 1 |a Zerlegung  |g Mathematik  |0 (DE-588)4190746-2  |D s 
689 1 |5 DE-188 
689 2 0 |a Ungarn  |t Strafverfahrensgesetz  |0 (DE-588)4138428-3  |D u 
689 2 1 |a Politische Meinungsäußerung  |0 (DE-588)4175032-9  |D s 
689 2 |8 1\p  |5 DE-604 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005410564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-005410564 

Datensatz im Suchindex

_version_ 1819359123724042240
adam_text Contents Preface ix Chapter 1 Introduction 1 1.1 Summary 1 1.2 Historical Notes 3 Chapter 2 Basic Definitions 5 2.1 Overview and Notation 5 2.2 Graph Definitions 6 2.3 Matrix Definitions 18 2.4 Complexity of Algorithms 24 2.5 References 25 Chapter 3 From Graphs to Matroids 26 3.1 Overview 26 3.2 Graphs Produce Graphic Matroids 27 3.3 Binary Matroids Generalize Graphic Matroids 52 3.4 Abstract Matrices Produce All Matroids 71 3.5 Characterization of Binary Matroids 85 3.6 References 87 V vi Contents Chapter 4 Series Parallel and Delta Wye Constructions 89 4.1 Overview 89 4.2 Series Parallel Construction 90 4.3 Delta Wye Construction for Graphs 96 4.4 Delta Wye Construction for Binary Matroids 101 4.5 Applications, Extensions, and References 109 Chapter 5 Path Shortening Technique Ill 5.1 Overview 111 5.2 Shortening of Paths 112 5.3 Intersection and Partitioning of Matroids 119 5.4 Extensions and References 125 Chapter 6 Separation Algorithm 128 6.1 Overview 128 6.2 Separation Algorithm 129 6.3 Sufficient Conditions for Induced Separations 134 6.4 Extensions of 3 Connected Minors 147 6.5 Extensions and References 150 Chapter 7 Splitter Theorem and Sequences of Nested Minors 151 7.1 Overview 151 7.2 Splitter Theorem 152 7.3 Sequences of Nested Minors and Wheel Theorem 157 7.4 Characterization of Planar Graphs 163 7.5 Extensions and References 165 Chapter 8 Matroid Sums 168 8.1 Overview 168 8.2 1 and 2 Sums 169 8.3 General fc Sums 173 8.4 Finding 1 , 2 , and 3 Sums 180 8.5 Delta Sum and Wye Sum 182 8.6 Extensions and References 186 Contents vii Chapter 9 Matrix Total Unimodularity and Matroid Regularity 188 9.1 Overview 188 9.2 Basic Results and Applications of Total Unimodularity 189 9.3 Characterization of Regular Matroids 196 9.4 Characterization of Ternary Matroids 199 9.5 Extensions and References 202 Chapter 10 Graphic Matroids 205 10.1 Overview 205 10.2 Characterization of Planar Matroids 206 10.3 Regular Matroids with M{K3i3) Minors 214 10.4 Characterization of Graphic Matroids 224 10.5 Decomposition Theorems for Graphs 227 10.6 Testing Graphicness of Binary Matroids 238 10.7 Applications, Extensions, and References 241 Chapter 11 Regular Matroids 245 11.1 Overview 245 11.2 1 , 2 , and 3 Sum Compositions Preserve Regularity 246 11.3 Regular Matroid Decomposition Theorem 251 11.4 Testing Matroid Regularity and Matrix Total Unimodularity 259 11.5 Applications of Regular Matroid Decomposition Theorem 260 11.6 Extensions and References 270 Chapter 12 Almost Regular Matroids 272 12.1 Overview 272 12.2 Characterization of Alpha Balanced Graphs 274 12.3 Several Matrix Classes 284 12.4 Definition and Construction of Almost Regular Matroids 294 12.5 Matrix Constructions 302 12.6 Applications, Extensions, and References 312 viii Contents Chapter 13 Max Flow Min Cut Matroids 314 13.1 Overview 314 13.2 2 Sum and Delta Sum Decompositions 316 13.3 Characterization of Max Flow Min Cut Matroids 326 13.4 Construction of Max Flow Min Cut Matroids and Polynomial Algorithms 335 13.5 Graphs without Odd i^ Minors 340 13.6 Applications, Extensions, and References 348 References 350 Author Index 378 Subject Index 383
any_adam_object 1
author Truemper, Klaus
author_facet Truemper, Klaus
author_role aut
author_sort Truemper, Klaus
author_variant k t kt
building Verbundindex
bvnumber BV008199818
callnumber-first Q - Science
callnumber-label QA166
callnumber-raw QA166.6
callnumber-search QA166.6
callnumber-sort QA 3166.6
callnumber-subject QA - Mathematics
classification_rvk SK 890
ctrlnum (OCoLC)25367779
(DE-599)BVBBV008199818
dewey-full 511/.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511/.5
dewey-search 511/.5
dewey-sort 3511 15
dewey-tens 510 - Mathematics
discipline Mathematik
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02252nam a2200589 c 4500</leader><controlfield tag="001">BV008199818</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">930903s1992 xx d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0127012257</subfield><subfield code="9">0-12-701225-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)25367779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008199818</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA166.6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52B40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">90C27</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05B35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Truemper, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matroid decomposition</subfield><subfield code="c">K. Truemper</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston u.a.</subfield><subfield code="b">Academic Press</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 398 S.</subfield><subfield code="b">zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="610" ind1="2" ind2="7"><subfield code="a">Ungarn</subfield><subfield code="t">Strafverfahrensgesetz</subfield><subfield code="0">(DE-588)4138428-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Décomposition (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Décomposition (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matroïde</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matroïdes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decomposition (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matroids</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Politische Meinungsäußerung</subfield><subfield code="0">(DE-588)4175032-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zerlegung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4190746-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matroid</subfield><subfield code="0">(DE-588)4128705-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dekomposition</subfield><subfield code="0">(DE-588)4149030-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matroid</subfield><subfield code="0">(DE-588)4128705-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dekomposition</subfield><subfield code="0">(DE-588)4149030-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matroid</subfield><subfield code="0">(DE-588)4128705-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zerlegung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4190746-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ungarn</subfield><subfield code="t">Strafverfahrensgesetz</subfield><subfield code="0">(DE-588)4138428-3</subfield><subfield code="D">u</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Politische Meinungsäußerung</subfield><subfield code="0">(DE-588)4175032-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=005410564&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005410564</subfield></datafield></record></collection>
id DE-604.BV008199818
illustrated Illustrated
indexdate 2024-12-20T09:18:15Z
institution BVB
isbn 0127012257
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-005410564
oclc_num 25367779
open_access_boolean
owner DE-12
DE-739
DE-703
DE-29T
DE-384
DE-634
DE-83
DE-188
owner_facet DE-12
DE-739
DE-703
DE-29T
DE-384
DE-634
DE-83
DE-188
physical X, 398 S. zahlr. graph. Darst.
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher Academic Press
record_format marc
spellingShingle Truemper, Klaus
Matroid decomposition
Ungarn Strafverfahrensgesetz (DE-588)4138428-3 gnd
Décomposition (Mathématiques)
Décomposition (mathématiques) ram
Matroïde
Matroïdes
Decomposition (Mathematics)
Matroids
Politische Meinungsäußerung (DE-588)4175032-9 gnd
Zerlegung Mathematik (DE-588)4190746-2 gnd
Matroid (DE-588)4128705-8 gnd
Dekomposition (DE-588)4149030-7 gnd
subject_GND (DE-588)4138428-3
(DE-588)4175032-9
(DE-588)4190746-2
(DE-588)4128705-8
(DE-588)4149030-7
title Matroid decomposition
title_auth Matroid decomposition
title_exact_search Matroid decomposition
title_full Matroid decomposition K. Truemper
title_fullStr Matroid decomposition K. Truemper
title_full_unstemmed Matroid decomposition K. Truemper
title_short Matroid decomposition
title_sort matroid decomposition
topic Ungarn Strafverfahrensgesetz (DE-588)4138428-3 gnd
Décomposition (Mathématiques)
Décomposition (mathématiques) ram
Matroïde
Matroïdes
Decomposition (Mathematics)
Matroids
Politische Meinungsäußerung (DE-588)4175032-9 gnd
Zerlegung Mathematik (DE-588)4190746-2 gnd
Matroid (DE-588)4128705-8 gnd
Dekomposition (DE-588)4149030-7 gnd
topic_facet Ungarn Strafverfahrensgesetz
Décomposition (Mathématiques)
Décomposition (mathématiques)
Matroïde
Matroïdes
Decomposition (Mathematics)
Matroids
Politische Meinungsäußerung
Zerlegung Mathematik
Matroid
Dekomposition
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005410564&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT truemperklaus matroiddecomposition
  • Verfügbarkeit

‌

Per Fernleihe bestellen Inhaltsverzeichnis
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Kontakt