Skip to content
TUM Library
OPAC
Universitätsbibliothek
Technische Universität München
  • Temporarily saved: 0 temporarily saved (Full)
  • Help
    • Contact
    • Search Tips
    • Interlibary loan info
  • Chat
  • Tools
    • Search History
    • Open Interlibary Loan
    • Recommend a Purchase
  • Deutsch
  • Account

    Account

    • Borrowed Items
    • Requested Items
    • Fees
    • Profile
    • Search History
  • Log Out
  • Login
  • Books & Journals
  • Papers
Advanced
  • Game theory
  • Cite this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
    • Export to BibTeX
    • Export to RIS
  • Add to favorites
  • Save temporarily Remove from Book Bag
  • Permalink
Export Ready — 
Cover Image
Game theory:
Saved in:
Bibliographic Details
Main Authors: Fudenberg, Drew 1957- (Author), Tirole, Jean 1953- (Author)
Format: Book
Language:English
Published: Cambridge, Mass. u.a. MIT Press 1992
Edition:2. print.
Subjects:
Game theory
Economics, Mathematical
Spieltheorie
Ökonometrie
Links:http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002968887&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002968887&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
Item Description:Literaturangaben
Physical Description:XXIII, 579 S. graph. Darst.
ISBN:0262061414
Staff View

MARC

LEADER 00000nam a2200000 c 4500
001 BV004825766
003 DE-604
005 20191031
007 t|
008 920512s1992 xxud||| |||| 00||| eng d
020 |a 0262061414  |9 0-262-06141-4 
035 |a (OCoLC)246833220 
035 |a (DE-599)BVBBV004825766 
040 |a DE-604  |b ger  |e rakddb 
041 0 |a eng 
044 |a xxu  |c XD-US 
049 |a DE-384  |a DE-473  |a DE-19  |a DE-739  |a DE-706  |a DE-188  |a DE-945  |a DE-11 
050 0 |a HB144.F83 1991 
082 0 |a 519.3 
082 0 |a 658.4/0353 20 
084 |a SK 860  |0 (DE-625)143264:  |2 rvk 
084 |a QH 430  |0 (DE-625)141581:  |2 rvk 
084 |a MAT 920f  |2 stub 
100 1 |a Fudenberg, Drew  |d 1957-  |e Verfasser  |0 (DE-588)170071790  |4 aut 
245 1 0 |a Game theory  |c Drew Fudenberg ; Jean Tirole 
250 |a 2. print. 
264 1 |a Cambridge, Mass. u.a.  |b MIT Press  |c 1992 
300 |a XXIII, 579 S.  |b graph. Darst. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
500 |a Literaturangaben 
650 4 |a Game theory 
650 4 |a Economics, Mathematical 
650 0 7 |a Spieltheorie  |0 (DE-588)4056243-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Ökonometrie  |0 (DE-588)4132280-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Spieltheorie  |0 (DE-588)4056243-8  |D s 
689 0 1 |a Ökonometrie  |0 (DE-588)4132280-0  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Tirole, Jean  |d 1953-  |e Verfasser  |0 (DE-588)11488014X  |4 aut 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002968887&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
856 4 2 |m HBZ Datenaustausch  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002968887&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-002968887 

Record in the Search Index

_version_ 1819351865716899840
adam_text Titel: Game theory Autor: Fudenberg, Drew Jahr: 1992 Contents Acknowledgments xv Introduction xvii I Static Games of Complete Information 1 1 Games in Strategic Form and Nash Equilibrium 3 1.1 Introduction to Games in Strategic Form and Iterated Strict Dominance 4 1.1.1 Strategic-Form Games 4 1.1.2 Dominated Strategies 6 1.1.3 Applications of the Elimination of Dominated Strategies 9 1.2 Nash Equilibrium 11 1.2.1 Definition of Nash Equilibrium 11 1.2.2 Examples of Pure-Strategy Equilibria 14 1.2.3 Nonexistence of a Pure-Strategy Equilibrium 16 1.2.4 Multiple Nash Equilibria, Focal Points, and Pareto Optimality 18 1.2.5 Nash Equilibrium as the Result of Learning or Evolution 23 1.3 Existence and Properties of Nash Equilibria 29 1.3.1 Existence of a Mixed-Strategy Equilibrium 29 1.3.2 The Nash-Equilibrium Correspondence Has a Closed Graph 30 1.3.3 Existence of Nash Equilibrium in Infinite Games with Continuous Payoffs 34 Exercises 36 References 42 2 Iterated Strict Dominance, Rationalizability, and Correlated Equilibrium 45 2.1 Iterated Strict Dominance and Rationalizability 45 2.1.1 Iterated Strict Dominance: Definition and Properties 45 2.1.2 An Application of Iterated Strict Dominance 47 2.1.3 Rationalizability 48 2.1.4 Rationalizability and Iterated Strict Dominance 50 2.1.5 Discussion 53 2.2 Correlated Equilibrium 53 2.3 Rationalizability and Subjective Correlated Equilibria 59 Exercises 60 References 63 viii Contents II Dynamic Games of Complete Information 65 3 Extensive-Form Games 67 3.1 Introduction 67 3.2 Commitment and Perfection in Multi-Stage Games with 70 Observed Actions 3.2.1 What Is a Multi-Stage Game? 70 3.2.2 Backward Induction and Subgame Perfection 72 3.2.3 The Value of Commitment and Time Consistency 74 3.3 The Extensive Form 77 3.3.1 Definition 77 3.3.2 Multi-Stage Games with Observed Actions 82 3.4 Strategies and Equilibria in Extensive-Form Games 83 3.4.1 Behavior Strategies 83 3.4.2 The Strategic-Form Representation of Extensive- Form Games 85 3.4.3 The Equivalence between Mixed and Behavior Strategies in Games of Perfect Recall 87 3.4.4 Iterated Strict Dominance and Nash Equilibrium 90 3.5 Backward Induction and Subgame Perfection 92 3.6 Critiques of Backward Induction and Subgame Perfection 96 3.6.1 Critiques of Backward Induction 97 3.6.2 Critiques of Subgame Perfection 99 Exercises 100 References 105 4 Applications of Multi-Stage Games with Observed Actions 107 4.1 Introduction 107 4.2 The Principle of Optimality and Subgame Perfection 108 4.3 A First Look at Repeated Games 110 4.3.1 The Repeated Prisoner s Dilemma 110 4.3.2 A Finitely Repeated Game with Several Static Equilibria 112 4.4 The Rubinstein-Ståhl Bargaining Model 113 4.4.1 A Subgame-Perfect Equilibrium 113 4.4.2 Uniqueness of the Infinite-Horizon Equilibrium 115 4.4.3 Comparative Statics 116 4.5 Simple Timing Games 117 4.5.1 Definition of Simple Timing Games 117 4.5.2 The War of Attrition 120 4.5.3 Preemption Games 126 Contents ¡x 4.6 Iterated Conditional Dominance and the Rubinstein Bargaining Game 128 ¦4.7 Open-Loop and Closed-Loop Equilibria 130 4.7.1 Definitions 130 4.7.2 A Two-Period Example 132 4.7.3 Open-Loop and Closed-Loop Equilibria in Games with Many Players 133 4.8 Finite-Horizon and Infinite-Horizon Equilibria 134 Exercises 138 References 141 5 Repeated Games 145 5.1 Repeated Games with Observable Actions 146 5.1.1 The Model 146 5.1.2 The Folk Theorem for Infinitely Repeated Games 150 5.1.3 Characterization of the Equilibrium Set 160 5.2 Finitely Repeated Games 165 5.3 Repeated Games with Varying Opponents 168 5.3.1 Repeated Games with Long-Run and Short-Run Players 168 5.3.2 Games with Overlapping Generations of Players 171 5.3.3 Randomly Matched Opponents 172 5.4 Pareto Perfection and Renegotiation-Proofness in Repeated Games 174 5.4.1 Introduction 174 5.4.2 Pareto Perfection in Finitely Repeated Games 176 5.4.3 Renegotiation-Proofness in Infinitely Repeated Games 179 5.5 Repeated Games with Imperfect Public Information 182 5.5.1 The Model 183 5.5.2 Trigger-Price Strategies 185 5.5.3 Public Strategies and Public Equilibria 187 5.5.4 Dynamic Programming and Self-Generation 188 5.6 The Folk Theorem with Imperfect Public Information 192 5.7 Changing the Information Structure with the Time Period 197 Exercises 200 References 203 III Static Games of Incomplete Information 207 6 Bayesian Games and Bayesian Equilibrium 209 6.1 Incomplete Information 209 6.2 Example 6.1: Providing a Public Good under Incomplete Information 211 6.3 The Notions of Type and Strategy 213 Contents 6.4 Bayesian Equilibrium 215 6.5 Further Examples of Bayesian Equilibria 215 6.6 Deletion of Strictly Dominated Strategies 226 6.6.1 Interim vs. Ex Ante Dominance 226 6.6.2 Examples of Iterated Strict Dominance 228 6.7 Using Bayesian Equilibria to Justify Mixed Equilibria 230 6.7.1 Examples 230 6.7.2 Purification Theorem 233 6.8 The Distributional Approach 234 Exercises 237 References 241 7 Bayesian Games and Mechanism Design 243 7.1 Examples of Mechanism Design 246 7.1.1 Nonlinear Pricing 246 7.1.2 Auctions 250 7.2 Mechanism Design and the Revelation Principle 253 7.3 Mechanism Design with a Single Agent 258 7.3.1 Implementable Decisions and Allocations 258 7.3.2 Optimal Mechanisms 262 7.4 Mechanisms with Several Agents: Feasible Allocations, Budget Balance, and Efficiency 268 7.4.1 Feasibility under Budget Balance 269 7.4.2 Dominant Strategy vs. Bayesian Mechanisms 270 7.4.3 Efficiency Theorems 271 7.4.4 Inefficiency Theorems 275 7.4.5 Efficiency Limit Theorems 279 7.4.6 Strong Inefficiency Limit Theorems 281 7.5 Mechanism Design with Several Agents: Optimization 284 7.5.1 Auctions 284 7.5.2 Efficient Bargaining Processes 288 7.6 Further Topics in Mechanism Design 292 7.6.1 Correlated Types 292 7.6.2 Risk Aversion 295 7.6.3 Informed Principal 297 7.6.4 Dynamic Mechanism Design 299 7.6.5 Common Agency 301 Appendix 303 Exercises 308 References 314 Contents x¡ IV Dynamic Games of Incomplete Information 319 8 Equilibrium Refinements: Perfect Bayesian Equilibrium, Sequential Equilibrium, and Trembling-Hand Perfection 321 8.1 Introduction 321 8.2 Perfect Bayesian Equilibrium in Multi-Stage Games of Incomplete Information 324 8.2.1 The Basic Signaling Game 324 8.2.2 Examples of Signaling Games 326 8.2.3 Multi-Stage Games with Observed Actions and Incomplete Information 331 8.3 Extensive-Form Refinements 336 8.3.1 Review of Game Trees 336 8.3.2 Sequential Equilibrium 337 8.3.3 Properties of Sequential Equilibrium 341 8.3.4 Sequential Equilibrium Compared with Perfect Bayesian Equilibrium 345 8.4 Strategic-Form Refinements 350 8.4.1 Trembling-Hand Perfect Equilibrium 351 8.4.2 Proper Equilibrium 356 Appendix 359 Exercises 360 References 364 9 Reputation Effects 367 9.1 Introduction 367 9.2 Games with a Single Long-Run Player 369 9.2.1 The Chain-Store Game 369 9.2.2 Reputation Effects with a Single Long-Run Player: The General Case 374 9.2.3 Extensive-Form Stage Games 381 9.3 Games with Many Long-Run Players 384 9.3.1 General Stage Games and General Reputations 384 9.3.2 Common-Interest Games and Bounded-Recall Reputations 386 9.4 A Single Big Player against Many Simultaneous Long- Lived Opponents 389 Exercises 391 References 394 xjj Contents 10 Sequential Bargaining under Incomplete Information 397 10.1 Introduction 397 10.2 Intertemporal Price Discrimination: The Single-Sale Model 400 10.2.1 The Framework 400 10.2.2 A Two-Period Introduction to Coasian Dynamics 402 10.2.3 An Infinite-Horizon Example oftheCoase Conjecture 405 10.2.4 The Skimming Property 406 10.2.5 The Gap Case 408 10.2.6 The No-Gap Case 411 10.2.7 Gap vs. No Gap and Extensions of the Single-Sale Model 414 10.3 Intertemporal Price Discrimination: The Rental or Repeated-Sale Model 416 10.3.1 Short-Term Contracts 417 10.3.2 Long-Term Contracts and Renegotiation 419 10.4 Price Offers by an Informed Buyer 421 10.4.1 One-Sided Offers and Bilateral Asymmetric Information 422 10.4.2 Alternating Offers and One-Sided Asymmetric Information 424 10.4.3 Mechanism Design and Bargaining 427 Exercises 428 References 432 V Advanced Topics 435 11 More Equilibrium Refinements: Stability, Forward Induction, and Iterated Weak Dominance 437 11.1 Strategic Stability 437 11.2 Signaling Games 446 11.3 Forward Induction, Iterated Weak Dominance, and Burning Money 460 11.4 Robust Predictions under Payoff Uncertainty 467 Exercises 473 References 475 12 Advanced Topics in Strategic-Form Games 479 12.1 Generic Properties of Nash Equilibria 479 12.1.1 Number of Nash Equilibria 479 12.1.2 Robustness of Equilibria to Payoff Perturbations 480 12.2 Existence of Nash Equilibrium in Games with Continuous Action Spaces and Discontinuous Payoffs 484 12.2.1 Existence of a Pure-Strategy Equilibrium 485 12.2.2 Existence of a Mixed-Strategy Equilibrium 487 Contents 12.3 Supermodular Games 489 Exercises 497 References 498 13 Payoff-Relevant Strategies and Markov Equilibrium 501 13.1 Markov Equilibria in Specific Classes of Games 503 13.1.1 Stochastic Games: Definition and Existence of Ì ÑÅ 503 13.1.2 Separable Sequential Games 505 13.1.3 Examples from Economics 507 13.2 Markov Perfect Equilibrium in General Games: Definition and Properties 513 13.2.1 Definition 513 13.2.2 Existence 515 13.2.3 Robustness to Payoff Perturbations 518 13.3 Differential Games 520 13.3.1 Definition 520 13.3.2 Equilibrium Conditions 521 13.3.3 Linear-Quadratic Differential Games 523 13.3.4 Technical Issues 525 13.3.5 Zero-Sum Differential Games 527 13.4 Capital-Accumulation Games 528 13.4.1 Open-Loop, Closed-Loop, and Markov Strategies 529 13.4.2 Differential-Game Strategies 534 Exercises 536 References 537 14 Common Knowledge and Games 541 14.1 Introduction 541 14.2 Knowledge and Common Knowledge 542 14.3 Common Knowledge and Equilibrium 546 14.3.1 The Dirty Faces and the Sage 547 14.3.2 Agreeing to Disagree 548 14.3.3 No-Speculation Theorems 550 14.3.4 Interim Efficiency and Incomplete Contracts 554 14.4 Common Knowledge, Almost Common Knowledge, and the Sensitivity of Equilibria to the Information Structure 554 14.4.1 The Lack of Lower Hemi-Continuity 556 14.4.2 Lower Hemi-Continuity and Almost Common Knowledge 562 Exercises 570 References 571 Index 573 Titel: Game theory Autor: Fudenberg, Drew Jahr: 1992 Contents Acknowledgments xv Introduction xvii I Static Games of Complete Information 1 1 Games in Strategic Form and Nash Equilibrium 3 1.1 Introduction to Games in Strategic Form and Iterated Strict Dominance 4 1.1.1 Strategic-Form Games 4 1.1.2 Dominated Strategies 6 1.1.3 Applications of the Elimination of Dominated Strategies 9 1.2 Nash Equilibrium 11 1.2.1 Definition of Nash Equilibrium 11 1.2.2 Examples of Pure-Strategy Equilibria 14 1.2.3 Nonexistence of a Pure-Strategy Equilibrium 16 1.2.4 Multiple Nash Equilibria, Focal Points, and Pareto Optimality 18 1.2.5 Nash Equilibrium as the Result of Learning or Evolution 23 1.3 Existence and Properties of Nash Equilibria 29 1.3.1 Existence of a Mixed-Strategy Equilibrium 29 1.3.2 The Nash-Equilibrium Correspondence Has a Closed Graph 30 1.3.3 Existence of Nash Equilibrium in Infinite Games with Continuous Payoffs 34 Exercises 36 References 42 2 Iterated Strict Dominance, Rationalizability, and Correlated Equilibrium 45 2.1 Iterated Strict Dominance and Rationalizability 45 2.1.1 Iterated Strict Dominance: Definition and Properties 45 2.1.2 An Application of Iterated Strict Dominance 47 2.1.3 Rationalizability 48 2.1.4 Rationalizability and Iterated Strict Dominance 50 2.1.5 Discussion 53 2.2 Correlated Equilibrium 53 2.3 Rationalizability and Subjective Correlated Equilibria 59 Exercises 60 References 63 viii Contents II Dynamic Games of Complete Information 65 3 Extensive-Form Games 67 3.1 Introduction 67 3.2 Commitment and Perfection in Multi-Stage Games with 70 Observed Actions 3.2.1 What Is a Multi-Stage Game? 70 3.2.2 Backward Induction and Subgame Perfection 72 3.2.3 The Value of Commitment and Time Consistency 74 3.3 The Extensive Form 77 3.3.1 Definition 77 3.3.2 Multi-Stage Games with Observed Actions 82 3.4 Strategies and Equilibria in Extensive-Form Games 83 3.4.1 Behavior Strategies 83 3.4.2 The Strategic-Form Representation of Extensive- Form Games 85 3.4.3 The Equivalence between Mixed and Behavior Strategies in Games of Perfect Recall 87 3.4.4 Iterated Strict Dominance and Nash Equilibrium 90 3.5 Backward Induction and Subgame Perfection 92 3.6 Critiques of Backward Induction and Subgame Perfection 96 3.6.1 Critiques of Backward Induction 97 3.6.2 Critiques of Subgame Perfection 99 Exercises 100 References 105 4 Applications of Multi-Stage Games with Observed Actions 107 4.1 Introduction 107 4.2 The Principle of Optimality and Subgame Perfection 108 4.3 A First Look at Repeated Games 110 4.3.1 The Repeated Prisoner s Dilemma 110 4.3.2 A Finitely Repeated Game with Several Static Equilibria 112 4.4 The Rubinstein-Ståhl Bargaining Model 113 4.4.1 A Subgame-Perfect Equilibrium 113 4.4.2 Uniqueness of the Infinite-Horizon Equilibrium 115 4.4.3 Comparative Statics 116 4.5 Simple Timing Games 117 4.5.1 Definition of Simple Timing Games 117 4.5.2 The War of Attrition 120 4.5.3 Preemption Games 126 Contents ¡x 4.6 Iterated Conditional Dominance and the Rubinstein Bargaining Game 128 ¦4.7 Open-Loop and Closed-Loop Equilibria 130 4.7.1 Definitions 130 4.7.2 A Two-Period Example 132 4.7.3 Open-Loop and Closed-Loop Equilibria in Games with Many Players 133 4.8 Finite-Horizon and Infinite-Horizon Equilibria 134 Exercises 138 References 141 5 Repeated Games 145 5.1 Repeated Games with Observable Actions 146 5.1.1 The Model 146 5.1.2 The Folk Theorem for Infinitely Repeated Games 150 5.1.3 Characterization of the Equilibrium Set 160 5.2 Finitely Repeated Games 165 5.3 Repeated Games with Varying Opponents 168 5.3.1 Repeated Games with Long-Run and Short-Run Players 168 5.3.2 Games with Overlapping Generations of Players 171 5.3.3 Randomly Matched Opponents 172 5.4 Pareto Perfection and Renegotiation-Proofness in Repeated Games 174 5.4.1 Introduction 174 5.4.2 Pareto Perfection in Finitely Repeated Games 176 5.4.3 Renegotiation-Proofness in Infinitely Repeated Games 179 5.5 Repeated Games with Imperfect Public Information 182 5.5.1 The Model 183 5.5.2 Trigger-Price Strategies 185 5.5.3 Public Strategies and Public Equilibria 187 5.5.4 Dynamic Programming and Self-Generation 188 5.6 The Folk Theorem with Imperfect Public Information 192 5.7 Changing the Information Structure with the Time Period 197 Exercises 200 References 203 III Static Games of Incomplete Information 207 6 Bayesian Games and Bayesian Equilibrium 209 6.1 Incomplete Information 209 6.2 Example 6.1: Providing a Public Good under Incomplete Information 211 6.3 The Notions of Type and Strategy 213 Contents 6.4 Bayesian Equilibrium 215 6.5 Further Examples of Bayesian Equilibria 215 6.6 Deletion of Strictly Dominated Strategies 226 6.6.1 Interim vs. Ex Ante Dominance 226 6.6.2 Examples of Iterated Strict Dominance 228 6.7 Using Bayesian Equilibria to Justify Mixed Equilibria 230 6.7.1 Examples 230 6.7.2 Purification Theorem 233 6.8 The Distributional Approach 234 Exercises 237 References 241 7 Bayesian Games and Mechanism Design 243 7.1 Examples of Mechanism Design 246 7.1.1 Nonlinear Pricing 246 7.1.2 Auctions 250 7.2 Mechanism Design and the Revelation Principle 253 7.3 Mechanism Design with a Single Agent 258 7.3.1 Implementable Decisions and Allocations 258 7.3.2 Optimal Mechanisms 262 7.4 Mechanisms with Several Agents: Feasible Allocations, Budget Balance, and Efficiency 268 7.4.1 Feasibility under Budget Balance 269 7.4.2 Dominant Strategy vs. Bayesian Mechanisms 270 7.4.3 Efficiency Theorems 271 7.4.4 Inefficiency Theorems 275 7.4.5 Efficiency Limit Theorems 279 7.4.6 Strong Inefficiency Limit Theorems 281 7.5 Mechanism Design with Several Agents: Optimization 284 7.5.1 Auctions 284 7.5.2 Efficient Bargaining Processes 288 7.6 Further Topics in Mechanism Design 292 7.6.1 Correlated Types 292 7.6.2 Risk Aversion 295 7.6.3 Informed Principal 297 7.6.4 Dynamic Mechanism Design 299 7.6.5 Common Agency 301 Appendix 303 Exercises 308 References 314 Contents x¡ IV Dynamic Games of Incomplete Information 319 8 Equilibrium Refinements: Perfect Bayesian Equilibrium, Sequential Equilibrium, and Trembling-Hand Perfection 321 8.1 Introduction 321 8.2 Perfect Bayesian Equilibrium in Multi-Stage Games of Incomplete Information 324 8.2.1 The Basic Signaling Game 324 8.2.2 Examples of Signaling Games 326 8.2.3 Multi-Stage Games with Observed Actions and Incomplete Information 331 8.3 Extensive-Form Refinements 336 8.3.1 Review of Game Trees 336 8.3.2 Sequential Equilibrium 337 8.3.3 Properties of Sequential Equilibrium 341 8.3.4 Sequential Equilibrium Compared with Perfect Bayesian Equilibrium 345 8.4 Strategic-Form Refinements 350 8.4.1 Trembling-Hand Perfect Equilibrium 351 8.4.2 Proper Equilibrium 356 Appendix 359 Exercises 360 References 364 9 Reputation Effects 367 9.1 Introduction 367 9.2 Games with a Single Long-Run Player 369 9.2.1 The Chain-Store Game 369 9.2.2 Reputation Effects with a Single Long-Run Player: The General Case 374 9.2.3 Extensive-Form Stage Games 381 9.3 Games with Many Long-Run Players 384 9.3.1 General Stage Games and General Reputations 384 9.3.2 Common-Interest Games and Bounded-Recall Reputations 386 9.4 A Single Big Player against Many Simultaneous Long- Lived Opponents 389 Exercises 391 References 394 xjj Contents 10 Sequential Bargaining under Incomplete Information 397 10.1 Introduction 397 10.2 Intertemporal Price Discrimination: The Single-Sale Model 400 10.2.1 The Framework 400 10.2.2 A Two-Period Introduction to Coasian Dynamics 402 10.2.3 An Infinite-Horizon Example oftheCoase Conjecture 405 10.2.4 The Skimming Property 406 10.2.5 The Gap Case 408 10.2.6 The No-Gap Case 411 10.2.7 Gap vs. No Gap and Extensions of the Single-Sale Model 414 10.3 Intertemporal Price Discrimination: The Rental or Repeated-Sale Model 416 10.3.1 Short-Term Contracts 417 10.3.2 Long-Term Contracts and Renegotiation 419 10.4 Price Offers by an Informed Buyer 421 10.4.1 One-Sided Offers and Bilateral Asymmetric Information 422 10.4.2 Alternating Offers and One-Sided Asymmetric Information 424 10.4.3 Mechanism Design and Bargaining 427 Exercises 428 References 432 V Advanced Topics 435 11 More Equilibrium Refinements: Stability, Forward Induction, and Iterated Weak Dominance 437 11.1 Strategic Stability 437 11.2 Signaling Games 446 11.3 Forward Induction, Iterated Weak Dominance, and Burning Money 460 11.4 Robust Predictions under Payoff Uncertainty 467 Exercises 473 References 475 12 Advanced Topics in Strategic-Form Games 479 12.1 Generic Properties of Nash Equilibria 479 12.1.1 Number of Nash Equilibria 479 12.1.2 Robustness of Equilibria to Payoff Perturbations 480 12.2 Existence of Nash Equilibrium in Games with Continuous Action Spaces and Discontinuous Payoffs 484 12.2.1 Existence of a Pure-Strategy Equilibrium 485 12.2.2 Existence of a Mixed-Strategy Equilibrium 487 Contents 12.3 Supermodular Games 489 Exercises 497 References 498 13 Payoff-Relevant Strategies and Markov Equilibrium 501 13.1 Markov Equilibria in Specific Classes of Games 503 13.1.1 Stochastic Games: Definition and Existence of Ì ÑÅ 503 13.1.2 Separable Sequential Games 505 13.1.3 Examples from Economics 507 13.2 Markov Perfect Equilibrium in General Games: Definition and Properties 513 13.2.1 Definition 513 13.2.2 Existence 515 13.2.3 Robustness to Payoff Perturbations 518 13.3 Differential Games 520 13.3.1 Definition 520 13.3.2 Equilibrium Conditions 521 13.3.3 Linear-Quadratic Differential Games 523 13.3.4 Technical Issues 525 13.3.5 Zero-Sum Differential Games 527 13.4 Capital-Accumulation Games 528 13.4.1 Open-Loop, Closed-Loop, and Markov Strategies 529 13.4.2 Differential-Game Strategies 534 Exercises 536 References 537 14 Common Knowledge and Games 541 14.1 Introduction 541 14.2 Knowledge and Common Knowledge 542 14.3 Common Knowledge and Equilibrium 546 14.3.1 The Dirty Faces and the Sage 547 14.3.2 Agreeing to Disagree 548 14.3.3 No-Speculation Theorems 550 14.3.4 Interim Efficiency and Incomplete Contracts 554 14.4 Common Knowledge, Almost Common Knowledge, and the Sensitivity of Equilibria to the Information Structure 554 14.4.1 The Lack of Lower Hemi-Continuity 556 14.4.2 Lower Hemi-Continuity and Almost Common Knowledge 562 Exercises 570 References 571 Index 573
any_adam_object 1
author Fudenberg, Drew 1957-
Tirole, Jean 1953-
author_GND (DE-588)170071790
(DE-588)11488014X
author_facet Fudenberg, Drew 1957-
Tirole, Jean 1953-
author_role aut
aut
author_sort Fudenberg, Drew 1957-
author_variant d f df
j t jt
building Verbundindex
bvnumber BV004825766
callnumber-first H - Social Science
callnumber-label HB144
callnumber-raw HB144.F83 1991
callnumber-search HB144.F83 1991
callnumber-sort HB 3144 F83 41991
callnumber-subject HB - Economic Theory and Demography
classification_rvk SK 860
QH 430
classification_tum MAT 920f
ctrlnum (OCoLC)246833220
(DE-599)BVBBV004825766
dewey-full 519.3
658.4/035320
dewey-hundreds 500 - Natural sciences and mathematics
600 - Technology (Applied sciences)
dewey-ones 519 - Probabilities and applied mathematics
658 - General management
dewey-raw 519.3
658.4/0353 20
dewey-search 519.3
658.4/0353 20
dewey-sort 3519.3
dewey-tens 510 - Mathematics
650 - Management and auxiliary services
discipline Mathematik
Wirtschaftswissenschaften
edition 2. print.
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02050nam a2200493 c 4500</leader><controlfield tag="001">BV004825766</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191031 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">920512s1992 xxud||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262061414</subfield><subfield code="9">0-262-06141-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246833220</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004825766</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HB144.F83 1991</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4/0353 20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 860</subfield><subfield code="0">(DE-625)143264:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 920f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fudenberg, Drew</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170071790</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Game theory</subfield><subfield code="c">Drew Fudenberg ; Jean Tirole</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass. u.a.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 579 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Game theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics, Mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tirole, Jean</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11488014X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002968887&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=002968887&amp;sequence=000004&amp;line_number=0002&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002968887</subfield></datafield></record></collection>
id DE-604.BV004825766
illustrated Illustrated
indexdate 2024-12-20T08:23:28Z
institution BVB
isbn 0262061414
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-002968887
oclc_num 246833220
open_access_boolean
owner DE-384
DE-473
DE-BY-UBG
DE-19
DE-BY-UBM
DE-739
DE-706
DE-188
DE-945
DE-11
owner_facet DE-384
DE-473
DE-BY-UBG
DE-19
DE-BY-UBM
DE-739
DE-706
DE-188
DE-945
DE-11
physical XXIII, 579 S. graph. Darst.
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher MIT Press
record_format marc
spellingShingle Fudenberg, Drew 1957-
Tirole, Jean 1953-
Game theory
Game theory
Economics, Mathematical
Spieltheorie (DE-588)4056243-8 gnd
Ökonometrie (DE-588)4132280-0 gnd
subject_GND (DE-588)4056243-8
(DE-588)4132280-0
title Game theory
title_auth Game theory
title_exact_search Game theory
title_full Game theory Drew Fudenberg ; Jean Tirole
title_fullStr Game theory Drew Fudenberg ; Jean Tirole
title_full_unstemmed Game theory Drew Fudenberg ; Jean Tirole
title_short Game theory
title_sort game theory
topic Game theory
Economics, Mathematical
Spieltheorie (DE-588)4056243-8 gnd
Ökonometrie (DE-588)4132280-0 gnd
topic_facet Game theory
Economics, Mathematical
Spieltheorie
Ökonometrie
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002968887&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002968887&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT fudenbergdrew gametheory
AT tirolejean gametheory
  • Availability

‌

Order via interlibrary loan Table of Contents
  • Legal Notice
  • Data Privacy
  • Accessibility Statement
  • First Level Hotline